CHAPTER Solutions Key

Polygons and Quadrilaterals

ARE YOU READY? PAGE 377

6

1.	F	2.	В
3.	A	4.	D
5.	E		
6.	Use \triangle Sum Thm. $x^{\circ} + 42^{\circ} + 32^{\circ} = 180^{\circ}$ $x^{\circ} = 180^{\circ}$ $x^{\circ} = 106^{\circ}$	- 42	<u>2° – 32°</u>
7.	Use \triangle Sum Thm. $x^{\circ} + 53^{\circ} + 90^{\circ} = 180^{\circ}$ $x^{\circ} = 180^{\circ}$ $x^{\circ} = 37^{\circ}$	- 53	8° — 90°
8.	Use \triangle Sum Thm. $x^{\circ} + x^{\circ} + 32^{\circ} = 180^{\circ}$ $2x^{\circ} = 180^{\circ} - 2x^{\circ} = 146^{\circ}$ $x^{\circ} = 73^{\circ}$	34°	
9.	Use \triangle Sum Thm. $2x^{\circ} + x^{\circ} + 57^{\circ} = 180^{\circ}$ $3x^{\circ} = 180^{\circ}$ $3x^{\circ} = 123^{\circ}$ $x^{\circ} = 41^{\circ}$	- 57	70
10.	By Lin. Pair Thm., $m \angle 1 + 56 = 180$ $m \angle 1 = 124^{\circ}$ By Vert. \measuredangle Thm., $m \angle 2 = 56^{\circ}$ By Corr. \measuredangle Post., $m \angle 3 = m \angle 1 = 124^{\circ}$ By Alt. Int. \measuredangle Thm., $m \angle 4 = 56^{\circ}$	11.	By Alt. Ext. \measuredangle Thm. $m\angle 2 = 101^{\circ}$ By Lin. Pair Thm., $m\angle 1 + m\angle 2 = 180^{\circ}$ $m\angle 1 + 101 = 180^{\circ}$ $m\angle 1 = 79^{\circ}$ Since $\ell \perp m, m \parallel m$ $\rightarrow \ell \perp n,$ $m\angle 3 = m\angle 4 = 90^{\circ}$
12.	By Same-Side Int. ▲ Th 3x + 2x = 180 5x = 180 x = 36 By Lin. Pair Thm., $m \angle 1 + 3(36) = 180$ $m \angle 1 + 108 = 180$ $m \angle 1 = 72^{\circ}$ By Corr. ▲ Post., $m \angle 2 = 3(36) = 108^{\circ}$	m.,	
13.4	$45^{\circ}-45^{\circ}-90^{\circ} △$ x = (11√2)√2 = 11(2) = 22	14.	$30^{\circ}-60^{\circ}-90^{\circ} \bigtriangleup$ $14 = 2x$ $x = 7$
15.	$45^{\circ}-45^{\circ}-90^{\circ} \bigtriangleup$ $x = 3\sqrt{2}$	16.	30°-60°-90° ∆ <i>x</i> = 2(8) = 16
	T (1) D (T) N (A)		

- **17.** T (Lin. Pair Thm.); if 2 *&* are supp., then they form a lin. pair; F (counterexample: any supp. but non-adj. pair of 🔬).
- **18.** F (counterexample: a pair of <u>&</u> with measure 30°); if 2 & are rt &, then they are \cong ; T (Rt. $\angle \cong$ Thm.).

19. F (counterexample: \triangle with side lengths 5, 6, 10); if a triangle is an acute triangle, then it is a scalene triangle; F (counterexample: any equilateral triangle).

6-1 PROPERTIES AND ATTRIBUTES OF POLYGONS, PAGES 382–388

CHECK IT OUT!

- 1a. not a polygon **b.** polygon, nonagon c. not a polygon
- **2a.** regular, convex **b.** irregular, concave
- **3a.** Think: Use Polygon ∠ Sum Thm. (*n* – 2)180° $(15 - 2)180^{\circ}$
- 2340° $(10 - 2)180^\circ = 1440^\circ$ b. $m \angle 1 + m \angle 2 + ... + m \angle 10 = 1440^{\circ}$
 - 10m∠1 = 1440° $m \angle 1 = 144^{\circ}$
- 4a. Think: Use Polygon Ext. ∠ Sum Thm. $m\angle 1 + m\angle 2 + \ldots + m\angle 12 = 360^{\circ}$ 12m∠1 = 360° $m \angle 1 = 30^{\circ}$
- **b.** 4r + 7r + 5r + 8r = 36024r = 360r = 15
- 5. By Polygon Ext. ∠ Sum Thm., sum of ext. ∠ measures is 360°. Think: There are 8 \cong ext. \measuredangle , so divide sum by 8. 2600 m(

$$(ext. \ \ \ \ \) = \frac{300}{8} = 45^{\circ}$$

THINK AND DISCUSS

1. Possible answers: Concave pentagon

Convex pentagon

A concave polygon seems to "cave in" or have a dent. A convex polygon does not have a dent.

2. Since polygon is not regular, you cannot assume that each of the ext. & has the same measure.

3.	Interior Angles	Exterior Angles
Sum of Angle Measures	(<i>n</i> – 2)180°	360°
One Angle Measure	$\frac{(n-2)180^{\circ}}{n}$	$\frac{360^{\circ}}{n}$

EXERCISES GUIDED PRACTICE 1. Possible answer: If a polygon is equil., all its sides are \cong , but all its \measuredangle are not necessarily \cong . For a polygon to be regular, all its sides must be \cong , and all its \measuredangle must be \cong . 2. polygon, decagon 3. not a polygon 4. polygon, quadrilateral not a polygon 6. regular, convex 7. irregular, concave 8. irregular, convex **9.** Think: Use Polygon \angle Sum Thm. $(5-2)180^\circ = 540^\circ$ 3z + 4z + 5z + 3z + 5z = 54020*z* = 540 z = 27 $m \angle A = m \angle D = 3(27) = 81^{\circ}$ $m \angle B = 4(27) = 108^{\circ}$ $m \angle C = m \angle E = 5(27) = 135^{\circ}$ **10.** Think: Use Polygon \angle Sum Thm. $(12 - 2)180^\circ = 1800^\circ$ $m \angle 1 + m \angle 2 + ... + m \angle 12 = 1800^{\circ}$ 12m∠1 = 1800° $m \angle 1 = 150^{\circ}$ **11.** Think: Use Polygon \angle Sum Thm. $(n-2)180^{\circ}$ $(20 - 2)180^{\circ}$ 3240° Think: Use Polygon Ext. ∠ Sum Thm. 4y + 2y + 6y + 4y = 36016y = 360y = 22.5**13.** Think: Use Polygon Ext. ∠ Sum Thm. $m \angle 1 + m \angle 2 + ... + m \angle 5 = 360^{\circ}$ 5m∠1 = 360° $m \angle 1 = 72^{\circ}$ 14. pentagon **15.** By Polygon \angle Sum Thm., sum of \angle measures is $(5-2)180 = 540^\circ$. Think: $m \angle Q = m \angle S$ by def. of $\cong \measuredangle$. $m \angle P + m \angle Q + m \angle R + m \angle S + m \angle T = 540$ $90 + m \angle S + 90 + m \angle S + 90 = 540$ $2m\angle S = 270$ $m \angle Q = m \angle S = 135^{\circ}$ PRACTICE AND PROBLEM SOLVING 16. polygon, hexagon 17. not a polygon 18. polygon, guadrilateral 19. irregular, concave 20. regular convex 21. irregular, convex **22.** 2n + 6n + 2n + 5n = (4 - 2)18015n = 360*n* = 24 $m \angle R = m \angle T = 2(24) = 48^{\circ}$ $m \angle S = 6(24) = 144^{\circ}$ $m \angle V = 5(24) = 120^{\circ}$ **23.** $18m \angle = (18 - 2)180$ **24.** $(7 - 2)180 = 900^{\circ}$ $18m \angle = 2880$ $m\angle = 160^{\circ}$

25. 9m(ext. ∠) = 360 m(ext. \angle) = 40° **26.** 5*a* + 4*a* + 10*a* + 3*a* + 8*a* = 360 30a = 360a = 12 **27.** $6m \angle JKM = (6-2)180$ **28.** $6m \angle MKL = 360$ $6m \angle JKM = 720$ $m \angle MKL = 60^{\circ}$ $m \angle JKM = 120^{\circ}$ **29.** x + x - 3 + 110 + 130 = (4 - 2)1802x + 237 = 3602x = 123*x* = 61.5 **30.** 2(90) + 2x + 2(x + 22) = (6 - 2)1804x + 224 = 7204x = 496x = 124**31.** 5*x* = 360° $x = 72^{\circ}$ 32. $m \angle = m(ext. \angle)$ $n(m \angle) = n(m(ext. \angle))$ (n-2)180 = 360180n = 720n = 433. $m \angle = 4m(ext. \angle)$ $n(m \angle) = 4n(m(ext, \angle))$ (n-2)180 = 4(360)180*n* = 1800 n = 10m(ext. \angle) = $\frac{1}{8}$ m \angle 34. $8n(m(ext. \angle)) = n(m\angle)$ 8(360) = (n-2)1803240 = 180*n n* = 18 **35.** (*n* − 2)180 = 540 **36.** (*n* – 2)180 = 900 n - 2 = 3n - 2 = 5n = 7n = 5heptagon pentagon **37.** (*n* − 2)180 = 1800 **38.** (*n* – 2)180 = 2520 n - 2 = 10n - 2 = 14*n* = 12 *n* = 16 dodecagon 16-gon **39.** 360 = *n*(120) **40.** 360 = *n*(72) n = 3*n* = 5 $m \angle = 180 - 120 = 60^{\circ}$ $m \angle = 180 - 72 = 108^{\circ}$ **41.** 360 = n(36)**42.** 360 = n(24)*n* = 10 *n* = 15 $m \angle = 180 - 36 = 144^{\circ}$ $m \angle = 180 - 24 = 156^{\circ}$

43. A; possible answer: this is not a plane figure, so it cannot be a polygon.

Check students' estimates; possible answer: pentagon is not equiangular; $m \angle A = 100^{\circ}$; $m \angle B = 113^{\circ}$; $m \angle C = 113^{\circ}$; $m \angle D = 101^{\circ}$; $m \angle E = 113^{\circ}$; yes, pentagon is not equiangular.

45a. heptagon **b.** (7 − 2)180 = 900°

c. $m \angle A + m \angle B + m \angle C + m \angle D$ + $m \angle E + m \angle F + m \angle G = 900$ 95 + 125 + $m \angle F + 130$ + 130 + $m \angle F + m \angle F = 900$ $3m \angle F + 480 = 900$ $3m \angle F = 420$ $m \angle F = 140^{\circ}$

46. Let *n* be number of sides and s (= 7.5) be side length. P = ns

r = ns45 = n(7.5)

n = 6

Polygon is a (regular) hexagon.

49. Possible answer:

50. Possible answer:

- 52. As number of sides increases, isosc. ▲ formed by each side become thinner, and dists. from any pt. on base of each triangle to its apex approach same value. For a circle, each pt. is the same dist. from center. So polygon begins to resemble a circle.

TEST PREP

53. A

54. H (16 −2)180 = 2520° ≠ 2880°

55. D

 $49 + 107 + 2m \angle D + m \angle D = (4 - 2)180$ $3m \angle D = 204$ $m \angle D = 68^{\circ}$ $m \angle C = 2(68) = 136^{\circ}$

CHALLENGE AND EXTEND

56. \angle measures are *a*, *a* + 4, ..., *a* + 16, where *a* is a multiple of 4. $a + a + 4 + \ldots + a + 16 = (5 - 2)180$ 5a + 40 = 5405a = 500*a* = 100 ∠ measures are 100°, 104°, 108°, 112°, and 116°. $\triangle PRQ \cong \triangle SRT$. By CPCTC, $\overline{PR} \cong \overline{RT}$, so $\triangle PRT$ is isosc. By Isosc. \triangle Thm., $\angle RTP \cong \angle RPT$, so $m \angle RTP = m \angle RPT = z^{\circ}$. By \triangle Sum Thm., 2z + y = 180 (1) By CPCTC and Isosc. \triangle Thm., $\angle PRQ \cong \angle SRT \cong \angle QPR \cong \angle RTS$ $m \angle PRQ = m \angle SRT = m \angle QPR = m \angle RTS = x^{\circ}$

Since PQRST is req., Subtr. (3) from (1): $5m\angle QRS = (5-2)180$ $z = 180 - 108 = 72^{\circ}$ 5(2x + y) = 540Subst: in (3): v + 72 = 1082x + y = 108 (2) $5m\angle PTS = (5-2)180$ $y = 36^{\circ}$ 5(y + z) = 540Subst. in (2): 2x + 36 = 108y + z = 108 (3) 2x = 72 $x = 36^{\circ}$

- **58.** $\overline{KA} \parallel \overline{EF} \parallel \overline{LC}$. By Alt. Int. \measuredangle Thm., $\angle BLC \cong$ ext. $\angle A$ and $\angle CLD \cong$ ext. $\angle E$ $m \angle ALC = m \angle CLE = \frac{360}{10} = 36^{\circ}$ $m \angle BLD = m \angle BLC + m \angle CLD = 72^{\circ}$
- **59.** Yes, if you allow for \angle measures greater than 180°. $m \angle A + m \angle B + m \angle C + m \angle D + m \angle E + m \angle F = 720^{\circ}$

SPIRAL REVIEW

60. $x^2 + 3x - 10 = 0$ **61.** $x^2 - x - 12 = 0$ (x+5)(x-2) = 0(x-4)(x+3) = 0x = -5 or x = 2x = 4 or x = -3 $x^2 - 12x = -35$ **63.** x + 4 > 462. $x^2 - 12x + 35 = 0$ *x* > 0 (x-7)(x-5) = 04 + 4 > xx = 7 or x = 58 > *x* 0 < *x* < 8 **64.** Check *x* + 6 > 12 and **65.** Check *x* + 3 > 7 and 3 + 7 > *x*, since 3 < 7. 6 + 12 > x, since 6 < 12. *x* + 6 > 12 *x* + 3 > 7 *x* > 6 *x* > 4 6 + 12 > *x* 3 + 7 > x18 > *x* 10 > x4 <*x* < 10 6 < *x* < 18

66.
$$c = 2a$$
 67. $= 2(6) = 12$

$$c = 2a$$

$$10 = 2a$$

$$a = 5$$

$$b = a\sqrt{3} = 5\sqrt{3}$$

6-2 PROPERTIES OF PARALLELOGRAMS, PAGES 391-397

CHECK IT OUT!

c. O is mdpt. of \overline{LN}

- 1a. $\overline{KN} \cong \overline{LM}$ **b.** $\angle NML \cong \angle LKN$ $m \angle NML = m \angle LKN$ KN = LM = 28 in. = 74°
- $LO = \frac{1}{2}LN$ $=\frac{1}{2}(26) = 13$ in. **2a.** $\overline{EJ} \cong \overline{JG}$ $\overline{FJ} \cong \overline{JH}$ b. EJ = JGFJ = JH3w = w + 84z - 9 = 2z2w = 82z = 9W = 4FH = 2JHJG = (4) + 8 = 12= 2(2z)= 2(9) = 183. Step 1 Graph given pts. 6 **†** Y Step 2 Find slope 0 of \overline{PQ} by counting units from P to Q. Rise from -2 to 4 is 6. Run from -3 to -1 is 2. 0 S Step 3 Start at S and count same # of pts. Rise of 6 from 0 is 6. Run of 2 from 5 is 7. Step 4 Use slope formula to verify that QR || PS. = 1 6 – 4 slope of $\overline{QR} =$ 7 + 14 = 1 0 + 2slope of $\overline{PS} =$ 5+3 Coords. of vertex R are (7, 6).

4.	Statements	Reasons	
	1. GHJN and JKLM are 🗈.	1. Given	
	2. $\angle N$ and $\angle HJN$ are supp.;	2. $\Box \rightarrow \text{cons.}$	
	$\angle K$ and $\angle MJK$ are supp.	are supp.	
	3. ∠ <i>HJN</i> \cong ∠ <i>MJK</i>	3. Vert. 🛦 Thm.	
	4. $\angle N \cong \angle K$	4. \cong Supps. Thm.	

THINK AND DISCUSS

- **1.** Measure of opp. \angle is 71°. Measure of each cons. \angle is $180 - 71 = 109^{\circ}$.
- **2.** XY = 21, WZ = 18, and YZ = 18; possible answer: since *VWXY* is a \square , opp. sides are \cong , so XY = VW= 21. \overline{WY} is a diag., and by Thm. 6-2-4, the other diag. bisects it, so $WZ = YZ = 36 \div 2 = 18$.

EXERCISES

GUIDED PRACTICE

1. Only 1 pair of sides is ||. By def., a □ has 2 pairs of || sides.

2. Possible answer: Q , R

opp. sides: \overline{PQ} and \overline{RS} , \overline{QR} and \overline{SP} ; opp. \measuredangle : $\angle P$ and $\angle R$, $\angle Q$ and $\angle S$ **4.** $\overline{CD} \cong \overline{AB}$ 3. E is mdpt. of BD BD = 2DE

- CD = AB = 17.5= 2(18) = 36
- 5. E is mdpt. of BD BE = DE = 18**6.** $\angle ABC$ and $\angle BCD$ are supp.
- $m \angle ABC = 180 m \angle BCD$ $= 180 - 110 = 70^{\circ}$
- **7.** $\angle ADC \cong \angle ABC$ **8.** $\angle DAB \cong BCD$ $m \angle ADC = m \angle ABC$ m∠DAB =m∠BCD $= 70^{\circ}$ = 110°

= 24.5

0 G

Λ

= 129°

9. $\overline{JK} \cong \overline{LM}$ **10.** LM = 3(3.5) + 14JK = LM7x = 3x + 14

$$4x = 14$$

 $x = 3.5$

- JK = 7(3.5) = 24.5
- **11.** $\angle L$ and $\angle M$ are supp. **12.** $m \angle M = 5(27) - 6$ $m \angle L + m \angle M = 180$ 2z - 3 + 5z - 6 = 1807*z* = 189 z = 27
 - $m \angle L = 2(27) 3 = 51^{\circ}$
- 13. Step 1 Graph given pts. Step 2 Find slope of FG by counting units from F to G. Rise from 5 to 0 is -5. Run from -1 to 2 is 3. Step 3 Start at D and count same # of pts. Rise of -5 from 4 is -1. Run of 3 from -9 is -6. **Step 4** Use slope formula to verify that $\overline{DF} \parallel \overline{GH}$. slope of $\overline{DF} = \frac{5-4}{1} = \frac{1}{2}$ -1 + 98 slope of $\overline{GH} = \frac{-1-0}{-6-2} = \frac{1}{8}$

Coords. of vertex H are (-6, -1).

4.4	Chatamarta	Desser
14.	Statements	Reasons
	1. PSTV is a \Box ; $PQ \cong RQ$.	1. Given
	$2.231V \cong 2P$	2. $\Box \rightarrow opp. \& \cong$ 3. Isoc \land Thm
	4. $\angle STV \cong \angle R$	4. Trans. Prop. of \cong
PRA	ICTICE AND PROBLEM SOLVING	ā Martin da
15.	$JN = \frac{1}{2}JL \qquad 16. LI$	M = JK = 110
	$=\frac{1}{2}(165.8)=82.9$	
17.	LN = JN = 82.9 18. m	$\angle JKL = m \angle JML$
		= 50°
19.	$m \angle KLM = 180 - m \angle JML$	
	$= 180 - 50 = 130^{\circ}$	
20.	$m\angle MJK = m\angle KLM$ 21. = 130° b	WV = VY
	= 100 D	+ 0 = 3b 8 = 4b
		<i>b</i> = 2
	W	V = (2) + 8 = 10
22.	YW = 2WV 23.	XV = ZV
	= 2(10) = 20 32	a = 7
		XZ = 2ZV
		= 2(2(7)) = 28
24.	ZV = 2(7) = 14	
	from 5 is -1	11 - 115 3, 1011 01 - 6
	Coords. of T are $(-1, 3)$.	
26.	Coords. of <i>T</i> are (-1, 3).	Reasons
26.	Coords. of T are $(-1, 3)$. Statements 1. <i>ABCD</i> and <i>AFGH</i> are \square .	Reasons 1. Given
26.	Coords. of <i>T</i> are $(-1, 3)$. Statements 1. <i>ABCD</i> and <i>AFGH</i> are \square . 2. $\angle C \cong \angle A$, $\angle A \cong \angle G$	Reasons 1. Given 2. $\Box \rightarrow \text{opp.} ▲ \cong$
26.	Coords. of <i>T</i> are $(-1, 3)$. Statements 1. <i>ABCD</i> and <i>AFGH</i> are \square . 2. $\angle C \cong \angle A$, $\angle A \cong \angle G$ 3. $\angle C \cong \angle G$	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong
26. 27.	Coords. of <i>T</i> are (-1, 3). Statements 1. <i>ABCD</i> and <i>AFGH</i> are \square . 2. $\angle C \cong \angle A$, $\angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; given	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side
26. 27.	Coords. of <i>T</i> are (-1, 3). Statements 1. <i>ABCD</i> and <i>AFGH</i> are \square . 2. $\angle C \cong \angle A$, $\angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; given lengths are =. R = PQ + QR + PS + SP	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side
26. 27.	Coords. of <i>T</i> are (-1, 3). Statements 1. <i>ABCD</i> and <i>AFGH</i> are \square . 2. $\angle C \cong \angle A$, $\angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ	Reasons1. Given2. $\Box \rightarrow$ opp. $\& \cong$ 3. Trans. Prop. of \cong PQ = QR, all 4 side
26. 27.	Coords. of <i>T</i> are (-1, 3). Statements 1. <i>ABCD</i> and <i>AFGH</i> are S. 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong PQ = QR, all 4 side
26. 27. 28.	Coords. of <i>T</i> are (-1, 3). Statements 1. <i>ABCD</i> and <i>AFGH</i> are \square . 2. $\angle C \cong \angle A$, $\angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; giver lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, $SP = QR = 3RS$	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side
26. 27. 28.	Coords. of <i>T</i> are (-1, 3). Statements 1. <i>ABCD</i> and <i>AFGH</i> are \square . 2. $\angle C \cong \angle A$, $\angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, $SP = QR = 3RSP = PQ + QR + RS + PS$	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong PQ = QR, all 4 side
26. 27. 28.	Coords. of T are $(-1, 3)$. Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side
26. 27. 28.	Coords. of T are $(-1, 3)$. Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side
26. 27. 28.	Coords. of T are (-1, 3). Statements 1. ABCD and AFGH are S. 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and SP = QR; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side
 26. 27. 28. 29. 	Coords. of T are (-1, 3). Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; giver lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5 PQ = RS = SP - 7, QR = SP	Reasons 1. Given 2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side
26. 27. 28. 29.	Coords. of T are $(-1, 3)$. Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and SP = QR; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5 PQ = RS = SP - 7, QR = SP P = PQ + QR + RS + PS 94 = CR = CR = CR	Reasons 1. Given 2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong PQ = QR, all 4 side
26. 27. 28. 29.	Coords. of T are $(-1, 3)$. Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and SP = QR; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5 PQ = RS = SP - 7, QR = SF P = PQ + QR + RS + PS 84 = SP - 7 + SP + SP - 7 84 = 4SP - 14	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side+ SP
26. 27. 28. 29.	Coords. of T are $(-1, 3)$. Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and SP = QR; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5 PQ = RS = SP - 7, QR = SF P = PQ + QR + RS + PS 84 = SP - 7 + SP + SP - 7 84 = 4SP - 14 98 = 4SP	Reasons1. Given2. $\Box \rightarrow$ opp. $\& \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side+ SP
26. 27. 28. 29.	Coords. of T are $(-1, 3)$. Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and SP = QR; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5 PQ = RS = SP - 7, QR = SP P = PQ + QR + RS + PS 84 = SP - 7 + SP + SP - 7 84 = 4SP - 14 98 = 4SP QR = SP = 24.5, PQ = RS =	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side $PQ = QR$, all 4 side $+ SP$ $24.5 - 7 = 17.5$
26. 27. 28. 29.	Coords. of T are $(-1, 3)$. Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and SP = QR; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5 PQ = RS = SP - 7, QR = SF P = PQ + QR + RS + PS 84 = SP - 7 + SP + SP - 7 84 = 4SP - 14 98 = 4SP QR = SP = 24.5, PQ = RS =	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side $PQ = QR$, all 4 side+ SP24.5 - 7 = 17.5
26. 27. 28. 29.	Coords. of T are $(-1, 3)$. Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and SP = QR; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5 PQ = RS = SP - 7, QR = SF P = PQ + QR + RS + PS 84 = SP - 7 + SP + SP - 7 84 = 4SP - 14 98 = 4SP QR = SP = 24.5, PQ = RS =	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side $PQ = QR$, all 4 side+ SP24.5 - 7 = 17.5
26. 27. 28. 29.	Coords. of T are $(-1, 3)$. Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and SP = QR; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5 PQ = RS = SP - 7, QR = SF P = PQ + QR + RS + PS 84 = SP - 7 + SP + SP - 7 84 = 4SP - 14 98 = 4SP QR = SP = 24.5, PQ = RS =	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side $PQ = QR$, all 4 side $+ SP$ $24.5 - 7 = 17.5$
26. 27. 28. 29.	Coords. of T are (-1, 3). Statements 1. ABCD and AFGH are \square . 2. $\angle C \cong \angle A, \angle A \cong \angle G$ 3. $\angle C \cong \angle G$ PQ = RS and $SP = QR$; given lengths are =. P = PQ + QR + RS + SP 84 = 4PQ PQ = QR = RS = SP = 21 PQ = RS, SP = QR = 3RS P = PQ + QR + RS + PS 84 = RS + 3RS + RS + 3RS 84 = 8RS PQ = RS = 10.5 SP = QR = 3(10.5) = 31.5 PQ = RS = SP - 7, QR = SF P = PQ + QR + RS + PS 84 = SP - 7 + SP + SP - 7 84 = 4SP - 14 98 = 4SP QR = SP = 24.5, PQ = RS =	Reasons1. Given2. $\Box \rightarrow$ opp. $\measuredangle \cong$ 3. Trans. Prop. of \cong $PQ = QR$, all 4 side $+ SP$ 24.5 - 7 = 17.5

30. PQ = RS, $QR = SP = RS^2$ P = PQ + QR + RS + PS $84 = RS + RS^{2} + RS + RS^{2}$ $84 = 2RS + 2RS^{2}$ $0 = RS^2 + RS - 42$ 0 = (RS + 7)(RS - 6)Since RS > 0, PQ = RS = 6, and $QR = SP = 6^2 = 36$. **31a.** ∠3 ≅ ∠1 (Corr. <u>&</u> Post.) $\angle 6 \cong \angle 1 \ (\Box \rightarrow \text{opp.} \& \cong)$ $\angle 8 \cong \angle 1 \ (\Box \rightarrow \text{opp.} \& \cong)$ **b.** $\angle 2$ is supp. to $\angle 1$ ($\Box \rightarrow \text{cons.} \measuredangle \text{ supp.}$), $\angle 4$ is supp. to $\angle 1$ ($\Box \rightarrow \text{cons.} \land \text{supp.}$), $\angle 5$ is supp. to $\angle 1$ ($\Box \rightarrow$ cons. \measuredangle supp.), and $\angle 7$ is supp. to ∠1 (Subst.). **32.** $\angle MPR \cong \angle RKM \ (\Box \rightarrow \text{opp.} \& \cong)$ **33.** $\angle PRK \cong \angle KMP \ (\square \rightarrow \text{opp.} \& \cong)$ **34.** $\overline{MT} \cong \overline{RT} (\Box \rightarrow \text{diags. bisect each other})$ **35.** $\overline{PR} \cong \overline{KM} (\Box \rightarrow \text{opp. sides } \cong)$ **36.** *MP* ∥ *RK* (Def. of □) **37.** *MK* ∥ *RP* (Def. of □) **38.** $\angle MPK \cong \angle RKP$ (Alt. Int. \measuredangle Thm.) **39.** $\angle MTK \cong \angle RTP$ (Vert. \measuredangle Thm.) **40.** $m \angle MKR + m \angle PRK = 180^{\circ} (\Box \rightarrow \text{cons} \& \text{supp.})$ 42. By Alt. Int. & Thm., **41.** By props. of **S**, $x = 90^{\circ}$ $y = 61^{\circ}$ By props. of **S**, $x + 61 = 18^{\circ}$ *x* = 119 $z = 53^{\circ}$ *z* = *x* = 119° By def. of comp. ∡, $y = 90 - 53 = 37^{\circ}$ **43.** By Vert. \checkmark Thm. and \bigtriangleup Sum Thm., 31 + 125 + x = 180 $x = 24^{\circ}$ y + (75 + 31) + 24 = 180 $y = 50^{\circ}$ By Alt. Int. & Thm., $z = y = 50^{\circ}$ 44a. CD **b.** ∠2 **c.** ∠4 d. opp. sides of a \square are \cong e. ASA f. CPCTC g. bisect **45.** Given: *ABCD* is a □, R 0 Prove: $\angle A$ and $\angle B$ are supp. $\angle B$ and $\angle C$ are supp. $\angle C$ and $\angle D$ are supp. $\angle D$ and $\angle A$ are supp. Statements Reasons 1. ABCD is a □. 1. Given 2. $\overline{AB} \parallel \overline{CD}, \overline{BC} \parallel \overline{DA}$ 2. Def. of □. 3. $\angle A$ and $\angle B$ are supp., 3. Same-side Int. $\angle B$ and $\angle C$ are supp., ⊿ Thm. $\angle C$ and $\angle D$ are supp.,

I

 $\angle D$ and $\angle A$ are supp.

46.
$$2x = y$$

 $4x = 2y$
 $x = 2y - 9$
 $3x = 9$
 $x = 3$
 $y = 2(3) = 6$
48a. $\angle B \cong \angle D$
 $m \angle B = m \angle D$
 $6x + 12 = 9x - 33$
 $45 = 3x$
 $x = 15$
 $m \angle B = 6(15) + 12 = 102^{\circ}$
b. $m \angle A = m \angle C = 180 - m \angle B$
 $= 180 - 102 = 78^{\circ}$
($\Box \rightarrow \text{ cons. } \& \text{ supp.}$)

+3

= 8

49. Possible answer:

- a. No; possible answer: Drawings show a counterexample, since all side pairs are \cong but \square are ≇.
- b. No; possible answer: For any given set of side lengths, a \Box could have many different shapes.
- 50. Possible answer: a quad. is a 4-sided polygon. Since every \Box is a polygon with 4 sides, every \Box is a quad. A
 has 2 pairs of || sides. Since sides of a quad. are not necessarily ||, a quad. is not necessarily a \Box .

52. J

TEST PREP

51. A

m 10 m / C

$$3x + 25 = 5x - 5$$
$$30 = 2x$$
$$x = 15$$

53. 26.4

$$P = AB + BC + CD + DA$$

 $= CD + BC + CD + BC$
 $= 2(5 + 8.2) = 26.4$

CHALLENGE AND EXTEND

54. Let given pts. be A(0, 5), B(4, 0), C(8, 5), and possible 4th pts. be X, Y, Z. \overline{AC} is horiz., and AC = |8 - 0| =and X = (4 - 8, 0) = (-4, 0). Similarly, \overline{BY} is horiz., and Y = (4From C to B is rise of 5 and run o $A ext{ is } 5 + 10 = 10$, run of 4 from Aso Z = (4, 10). **55.** Let given pts. be A(-2, 1), B(3, and possible 4th pts. be X, Y, Z. From C to B is rise of 3 and run o A is 1 + 3 = 4, run of 4 from A is X = (2, 4).From B to C is rise of -3 and run from *A* is 1 - 3 = -2, run of -4-2 - 4 = -6, so Y = (-6, -2). From A to B is rise of -2 and run from C is -4 - 2 = -6, run of 5 from C is

-1 + 5 = 4; so Z = (4, -6).

Let $\angle 1 = x^\circ$ and $\angle CDE = y^\circ$. Draw \overrightarrow{AD} . ABCD and AFED are \square , so $\overline{BC} \parallel \overline{AD}$ and $\overline{FE} \parallel \overline{AD}$ by def. So $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$ by the Alt. Int. \measuredangle Thm. Thus $m \angle 1 = m \angle 2$ and $m \angle 3 = m \angle 4$. Then $m \angle 1 + m \angle 3$ $= m \angle 2 + m \angle 4$ by the Add. Prop. of =. By the \angle Add. Post., $m\angle 2 + m\angle 4 = m\angle CDE$. So $m\angle 1 + m\angle 4 = m\angle CDE$. $m \angle 3 = \angle CDE$. Since ABCD and AFED are \cong , with $\angle 1$ corr. to $\angle 3$, m $\angle 1$ = m $\angle 3$. So m $\angle 1$ + m $\angle 1$ = $m \angle CDE$ by subst. So $2m \angle 1 = m \angle CDE$, or y = 2x.

Given: ABCD is a \Box . \overrightarrow{AE} bisects $\angle DAB$. \overrightarrow{BE} bisects $\angle CBA$.

			\rightarrow		\rightarrow
D	ro	v۵	ΔĒ	1	RF
	10	ve		_	

Statements	Reasons
1. <i>ABCD</i> is a □.	1. Given
<u>AÉ</u> bisects ∠DAB.	
<i>BÉ</i> bisects ∠ <i>CBA</i> .	
2. $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$	Def. of ∠ bisector
3. BC AD	3. Def. of 🗖
4. ∠4 ≅ ∠7	4. Alt. Int. 🕭 Thm.
5. ∠3 ≅ ∠7	5. Trans. Prop. of \cong
6. $\overline{AE} \cong \overline{AE}$	6. Reflex. Prop. of \cong
7. $\triangle ABE \cong \triangle AFE$	7. AAS
8. ∠5 ≅ ∠6	8. CPCTC
9. ∠5 and ∠6 are supp.	9. Lin. Pair Thm.
10. ∠5 and ∠6 are rt. &.	10. ≅ & supp. → rt. &
11. <i>ĂÉ</i> ⊥ <i>BÉ</i>	11. Def. of ⊥

SPIRAL REVIEW

C(0, 5), and	58. negative correlation	59. no correlation
8. So XB is horiz.,	60. alt. int. 🛦	61. alt. ext. 🖄
(+8,0) = (12,0)	62. same-side int. 🛦	63. corr. 🖄
of 4; rise of 5 from is $0 + 4 = 4;$	64. $(n)120 = (n - 2)180$ 360 = 60n n = 6 sides	65. $(n)135 = (n - 2)180$ 360 = 45n n = 8 sides
-1), <i>C</i> (-1, -4),	$6m(ext. \angle) = 360$ $m(ext. \angle) = 60^{\circ}$	$8m(ext. \angle) = 360$ $m(ext. \angle) = 45^{\circ}$
of 4; rise of 3 from $-2 + 4 = 2$, so	66. $(n)156 = (n - 2)180$ 360 = 24n n = 15 sides	
of -4 ; rise of -3 from A is	15m(ext. ∠) = 360 m(ext. ∠) = 24°	
of 5; rise of -2		

6-3 CONDITIONS FOR PARALLELOGRAMS. PAGES 398-405

CHECK IT OUT!

1. Think: Show that \overline{PQ} and \overline{RS} are \parallel and \cong . $a = 2.4 \rightarrow PQ = 7(2.4) = 16.8, RS = 2(2.4) + 12$ = 16.8, so PQ ≅ RS $b = 9 \rightarrow m \angle Q = 10(9) - 16 = 74^{\circ}, m \angle R = 9(9) + 25$ $= 106^{\circ}$ $m \angle Q + m \angle R = 180^\circ$, so $\angle Q$ and $\angle R$ are supp.

By Conv. of Alt. Int. & Thm., $\overline{PQ} \parallel \overline{RS}$. So PQRS is a
by Thm. 6-3-1 since 1 pair of opposite sides is \parallel and \cong .

- 2a. Yes; possible answer: the diag. of the quad. forms 2 A with 2 \cong pairs of \pounds . By 3rd \pounds Thm., 3rd pair of \pounds in \triangle are \cong . So both pairs of opp. \triangle of the guad. are \cong . By Thm. 6-3-3, quad. is a □.
- **b.** No; 2 pairs of cons. sides are \cong , but none of the sets of conditions for a \square are met.
- 3. Possible answers: Find slopes of both pairs of opp. sides.

opp. sides. slope of $\overline{KL} = \frac{7-0}{-5+3} = -\frac{7}{2}$ slope of $\overline{MN} = \frac{-2-5}{5-3} = -\frac{7}{2}$ slope of $\overline{LM} = \frac{5-7}{3+5} = -\frac{1}{4}$ slope of $\overline{KN} = \frac{-2-0}{5+3} = -\frac{1}{4}$ Since both pairs of opp. sides are ||, *KLMN* is a \Box by definition

by definition.

4. Possible answer: by Thm. 6-3-2, ABRS is a □. Since \overline{AB} is vert. and $\overline{RS} \parallel \overline{AB}$, \overline{RS} is vert., so \angle of binoculars stays the same.

THINK AND DISCUSS

- 1. Possible answer: Conclusion of each thm. is "The guad. is a \Box ."
- 2. Possible answer: In Lesson 6-2, "A quad. is a ," is the hypothesis of each thm., rather than the conclusion.
- 3.

EXERCISES

GUIDED PRACTICE

- **1. Step 1** Find \overline{EJ} and \overline{JG} . EJ = t + 12JG = 3tEJ = 6 + 12 = 18JG = 3(6) = 18**Step 2** Find \overline{FJ} and \overline{JH} . FJ = 2sJG = s + 5FJ = 2(5) = 10JG = 5 + 5 = 10Since EJ = JG and FJ = JH, EFGH is a \Box by Thm. 6-3-5 since its diagonals bisect each other.
- **2.** $\angle L = 5m + 36$ $\angle L = 5(14) + 36 = 106^{\circ}$ $\angle P = 6n - 1$ $\angle P = 6(12.5) - 1 = 74^{\circ}$ $\angle Q = 4m + 50$ $\angle Q = 4(14) + 50 = 106^{\circ}$ Since $106^\circ + 74^\circ = 180^\circ$, $\angle P$ is supp. to both $\angle L$ and $\angle Q$. *KLPQ* is a \Box by Thm. 6-3-4 since an angle is supp. to both its cons &.
- **3.** Yes; both pairs of opp. \measuredangle of the quad. are \cong . By Thm. 6-3-3, the quad. is a \Box .
- 4. No; 1 pair of opp. sides of quad. are \cong . 1 diag. is bisected by other diag. None of the conditions for a □ are met.
- 5. Yes; possible answer: a pair of alt. int. \measuredangle are \cong , so 1 pair of opp. sides are ||. The same pair of opp. sides are \cong . By Thm. 6-3-1, guad. is a \square .
- 6. Possible answer: Find slopes of both pairs of opp. sides.

opp. sides. slope of $\overline{WX} = \frac{3+2}{-3+5} = \frac{5}{2}$ slope of $\overline{YZ} = \frac{0-5}{1-3} = \frac{5}{2}$ slope of $\overline{XY} = \frac{5-3}{3+3} = \frac{1}{3}$ slope $\overline{WZ} = \frac{0+2}{1+5} = \frac{1}{3}$ Since both pairs of opp. sides are ||, WXYZ is a \square by definition.

7. Possible answer: Find slopes of both pairs of opp. sides.

slope of $\overline{RS} = \frac{-1+5}{-2+1} = -4$ slope of $\overline{TU} = \frac{-5+1}{5-4} = -4$ slope of $\overline{ST} = \frac{-1+1}{4+2} = 0$ slope of $\overline{RU} = \frac{-5+5}{5+1} = 0$ Since both pairs of opp. sides are \parallel , *RSTU* is a \square by def.

8. Since $\overline{AD} \parallel \overline{BC}$ and $\overline{AD} \cong \overline{BC}$, ABCD is a \Box by Thm. 6-3-1, so $\overline{AB} \parallel \overline{CD}$ by def. of \Box .

PRACTICE AND PROBLEM SOLVING

9. BC = 3(3.2) + 7 = 16.6, GH = 8(3.2) - 9 = 16.6BH = 3(7) + 7 = 28, CG = 6(7) - 14 = 28BCGH is a \square by Thm. 6-3-2.

- **10.** UV = 10(19.5) 6 = 189, TW = 8(19.5) + 33 = 189 $m ∠ V = 2(22) + 41 = 85^{\circ}$, $m ∠ W = 7(22) - 59 = 95^{\circ}$ $\overline{UV} \cong \overline{TW}$; ∠V and ∠W are supp., so by Conv. of Same-Side Int. ▲ Thm., $\overline{UV} \parallel \overline{TW}$. TUVW is a \square by Thm. 6-3-1.
- Yes; both pairs of opp. sides are ≅, since all sides are ≅, so quad is a □ by Thm. 6-3-2.
- 12. Yes; by ∠ Add. Post., 1 pair of opp. & are ≅, and by 3rd & Thm., 2nd pair of opp. & are ≅. So quad is a □ by Thm. 6-3-3.
- **13.** No; by looking at the angles, we can be sure that one pair of sides are ||. This is not enough.
- **14.** slope of $\overline{JK} = \frac{7}{-2} = -\frac{7}{2}$; slope of $\overline{LM} = \frac{-7}{2} = -\frac{7}{2}$ slope of $\overline{KL} = \frac{-1}{5} = -\frac{1}{5}$; slope of $\overline{JM} = \frac{-1}{5} = -\frac{1}{5}$ both pairs of opp. sides have the same slope, so $\overline{JK} \parallel \overline{LM}$ and $\overline{KL} \parallel \overline{MJ}$; JKLM is a \Box by definition.
- **15.** slope of $\overline{PQ} = \frac{5}{3}$; slope of $\overline{RS} = \frac{-5}{-3} = \frac{5}{3}$ slope of $\overline{QR} = \frac{-6}{6} = -1$; slope of $\overline{PS} = \frac{-6}{6} = -1$. So, $\overline{PQ} \parallel \overline{RS}$ and $\overline{PS} \parallel \overline{QR}$. PQRS is a \Box by def.
- **16.** Possible answer: The brackets are always the same length, so it is always true that AB = CD. The bolts are always the same dist. apart, so it is always true that BC = DA. By Thm. 6-3-2, *ABCD* is always a \Box . The side \overline{AD} stays horiz. no matter how you move the tray. Since $\overline{BC} \parallel \overline{AD}$, \overline{BC} stays horiz. Since \overline{BC} holds the tray in position, the tray will stay horiz. no matter how it is moved.
- 18. No; you are only given the measures of the 4 ▲ formed by the diags. None of the sets of conditions for a □ are met.
- **19.** Yes; diags. of the quad. bisect each other. By Thm. 6-3-5, the quad. is a □.
- **20.** Think: Opp. sides must be \cong .

2a + 6 = 3a - 10
16 = a
2a + 6 = 3a - 10
16 = a
2a + 6 = 3a - 10
16 = a
2a + 6 = 3a - 10
6b - 3 = 5(16) + 1
6b = 84
b = 14
21. Think: Middle ∠ must be supp. to cons.
$$\measuredangle$$
.
4a - 8 + 8a - 10 = 180
12a = 198
a = 16.5
4(16.5) - 8 + 5b + 6 = 180
5b = 116
b = 23.2
22. Think: Diags. must bisect each other.
5b - 7 = 3b + 6
2b = 13
b = 6.5
2a = 14.5
b = 6.5
a = 7.25

23. Think: 1 pair of opp. sides must be ≅ and ||. For conditions of Conv. of Alt. Int. ▲ Thm., given ▲ must be ≃

3a + 1.8 = 4a - 6.68.4 = a

24. Possible answer: If the diags. of a quad. are ≅, you cannot necessarily conclude that the quad. is a □.

25. Possible answer: The red and green A are isosc. rt. A, so the measure of each acute ∠ of the A is 45°. Each of the smaller & of the yellow stripe is comp. to 1 of the acute & of the rt. A, so the measure of each of the smaller & of the yellow stripe is 90° - 45° = 45°. Each of the larger & of the yellow stripe is supp. to 1 of the acute & of the rt. A, so the measure of each of the larger & of the yellow stripe is 180° - 45° = 135°. So the yellow stripe is quad. in which both pairs of opp. & are ≅. By Thm. 6-3-3, the shape of the yellow stripe is a □.

26a. Reflex. Prop. of \cong	b. △ <i>BCD</i>
c. SSS	d. ∠3
e. ∠2	f. Conv. of Alt. Int. 🛓 Thm.
g. def. of 🗀	
27a. ∠ <i>Q</i>	b. ∠ <i>S</i>
c. <i>SP</i>	d. <i>RS</i>
e. 🗆	

28. Given: ABCD is a \Box , E is the mdpt. of \overline{AB} , and F is the mdpt. of \overline{CD} .

Prove: *AEFD* and *EBCF* are \blacksquare . **Proof:** Since *ABCD* is a \Box , $\overline{AB} \parallel \overline{CD}$, so $\overline{AE} \parallel \overline{DF}$ and $\overline{EB} \parallel \overline{FC}$. Since opp. sides of a \Box are \cong , $\overline{AB} \cong \overline{CD}$. It is given that *E* is the mdpt. of \overline{AB} , and *F* is the mdpt. of \overline{CD} . Because these two segs. are \cong , it follows that $\overline{AE} \cong \overline{EB} \cong \overline{DF} \cong \overline{FC}$. Since $\overline{AE} \parallel \overline{DF}$ and $\overline{AE} \cong \overline{DF}$, *AEFD* is a \Box . Similarly, *EBCF* is a \Box .

29.	Statements	Reasons
	1. $\angle E \cong \angle G$, $\angle F \cong \angle H$	1. Given
	2. m $\angle E = m \angle G$, m $\angle F = m \angle H$	2. Def. of ≅ &
	3. m $\angle E$ + m $\angle F$ + m $\angle G$	3. Polygon Sum
	$+ m \angle H = 360^{\circ}$	Thm.
	4. m∠ E + m∠ F + m∠ E	4. Subst.
	$+ m \angle F = 360^\circ, m \angle E + m \angle H$	
	$+ m \angle E + m \angle H = 360^{\circ}$	
	5. $2m \angle E + 2m \angle F = 360^\circ$,	5. Distrib. Prop.
	$2m\angle E + 2m\angle H = 360^{\circ}$	of =
	6. m∠ E + m∠ F = 180°,	6. Div. Prop. of $=$
	$m \angle E + m \angle H = 180^{\circ}$	
	7. $\angle E$ is supp. to $\angle F$ and $\angle H$.	7. Def. of supp. 🔬
	8. EF GH, FG HE	8. Conv. of Same-
		Side Int. \land Thm.
	9. <i>EFGH</i> is a □.	9. Def. of 🗖

30.	Statements	Reasons
	1. \overline{JL} and \overline{KM} bisect each other.	1. Given
	2. $\overline{JN} \cong \overline{LN}, \overline{KN} \cong \overline{MN}$	2. Def. of bisect
	3. $\angle JNK \cong \angle LNM$,	3. Vert. \land Thm.
	$\angle KNL \cong \angle MNJ$	
	4. $\triangle JNK \cong \triangle LNM$,	4. SAS
	$\triangle KNL \cong \triangle MNJ$	
	5. $\angle JKN \cong \angle LMN$,	5. CPCTC
	$\angle KLN \cong \angle MJN$	
	6. <i>JK</i> <i>LM</i> , <i>KL</i> <i>MJ</i>	6. Conv. of Alt Int.
		l ∕≜ Thm.
	7. <i>JKLM</i> is a □.	7. Def. of 🗖

31. Possible answer:

Given: \overline{DE} and \overline{EF} are midsegments of $\triangle ABC$. **Prove:** ADEF is a \square .

Statements	Reasons
1. <i>DE</i> and <i>EF</i> are	1. Given
midsegs. of $\triangle ABC$.	
2. DE FA, AD EF	2. △ Midseg. Thm.
3. <i>ADEF</i> is a □.	3. Def. of 🗖

- 32. Possible answer: A quad. is a □ if and only if both pairs of opp. sides are ≅. A quad. is a □ if and only if both pairs of opp. A quad. is a □ if and only if its diags. bisect each other.
- 33. Possible answer:

Draw line ℓ . Draw P, not on ℓ . Draw a line through P that intersects ℓ at Q. Construct $m \parallel$ to ℓ through P. Place the compass point at Q and mark off a seg. on ℓ . Label the second endpoint of this seg as R. Using the same compass setting, place the compass point at P and mark off a \cong seg. on m. Label the second endpoint of this seg. S. Draw \overline{RS} . Since $\overline{PS} \parallel \overline{QR}$ and $\overline{PS} \cong \overline{QR}$, PSRQ is a \Box by Thm. 6-3-1.

34a. No; none of sets of conditions for a \square are met.

- **b.** Yes; since $\angle S$ and $\angle R$ are supp., $\overline{PS} \parallel \overline{QR}$. Thus *PQRS* is a \Box by Thm. 6-3-1.
- **c.** Yes; draw \overline{PR} . $\angle QPR \cong \angle SRP$ (Alt. Int. \measuredangle Thm.) and $\overline{PR} \cong \overline{PR}$ (Reflex Prop. of \cong). So $\triangle QPR \cong \triangle SRP$ (AAS), and $\overline{PQ} \cong \overline{SR}$ (CPCTC). Since $\overline{PQ} \parallel \overline{SR}$ and $\overline{PQ} \cong \overline{SR}$, PQRS is a \Box by Thm. 6-3-1.

TEST PREP

35. B

By Conv. of Alt. Int. \measuredangle Thm., $\overline{WX} \parallel \overline{YZ}$; need $\overline{WX} \cong \overline{YZ}$ to meet conditions of Thm. 6-3-1.

36. G

Slope of \overline{AB} : rise of 4 and run of 2, or rise of -4 and run of -2; rise of ±4 from *C* is 1 ± 4 = 5 or -3, run of ±2 from *C* is 6 ± 2 = 8 or 4. So *D* could be at (8, 5) or (4, -3).

37. No; possible answer: slope of $\overline{RS} = \frac{3}{4}$, slope of $\overline{TV} = 1$; \overline{RS} and \overline{TV} do not have same slope, so $\overline{RS} \notin \overline{TV}$; \overline{RS} and \overline{TV} are opp. sides of RSTV; by def., both pairs of opp. sides of a \Box are \parallel , so RSTV is not a \Box .

CHALLENGE AND EXTEND

- 38. The top and bottom of each step form a small □ with the back of the stairs and the base of the railing. The vertices of each □ have joints that allow the pieces to move. But the lengths of the sides of stay the same. Since they start out as s with opp. sides that are ≈, and the lengths do not change, they remain s. Therefore the top and bottom of each step, and thus also the upper platform, remain ∥ to ground regardless of the position of the staircase.
- **39.** Let intersection and vertices be *P*(-2, 1.5), *A*(-7, 2), *B*(2, 6.5), *C*(*x*, *y*), and *D*(*u*, *v*). *P* is mdpt. of *AC* and *BD*.

$$\begin{array}{l} (-2, 1.5) = \left(\frac{-7 + x}{2}, \frac{2 + y}{2}\right) \\ x = 3, y = 1; \ C = (3, 1) \\ (-2, 1.5) = \left(\frac{2 + u}{2}, \frac{6.5 + v}{2}\right) \\ u = -6, \ v = -3.5; \ D = (-6, -3.5) \end{array}$$

40. Possible answer:

Draw *F* collinear with *D* and *E* such that $\overline{DE} \cong \overline{EF}$. Since *E* is the mdpt. of \overline{BC} , $\overline{CE} \cong \overline{EB}$. By the Vert. & *Thm.*, $\angle CED \cong \angle BEF$. *Thus* $\triangle CED \cong \triangle BEF$ by SAS. By CPCTC, $\overline{CD} \cong \overline{FB}$. Since *D* is the mdpt. of \overline{AC} , $\overline{CD} \cong \overline{AD}$. So by the Trans. Prop. of \cong , \overline{AD} $\cong \overline{FB}$. Also by CPCTC, $\angle CDE \cong \angle BFE$. By Conv. of Alt. Int. & Thm., $\overline{AC} \parallel \overline{FB}$. Thus *DFBA* is a \Box since 1 pair of opp. sides are \parallel and \cong . Since *DFBA* is a \Box , $\overline{DE} \parallel \overline{AB}$ by definition. Since opp. sides of a \Box are \cong , $\overline{AB} \cong \overline{DF}$ and AB = DF by the def. of \cong segs. Since $\overline{DE} \cong \overline{EF}$, *E* is the mdpt. of \overline{DF} , and DE

$$=\frac{1}{2}$$
 DF. By subst., $DE = \frac{1}{2}$ AB.

SPIRAL REVIEW

41. <i>x</i>		-5	-2	0	0.5
	у	-38	-17	-3	0.5

42.	x	-5	-2	0	0.5
	У	-1.5	0	1	1.25
43.	x	-5	-2	0	0.5
	у	77	14	2	2.75

- **44.** It is given that $\overline{BC} \cong \overline{DA}$ and that $\angle DBC \cong \angle BDA$. By Reflex. Prop. of \cong , $\overline{DB} \cong \overline{DB}$. Therefore $\triangle ABD \cong \triangle CDB$ by SAS.
- **45.** Possible answer: It is given that $\overline{TW} \cong \overline{VW}$. Because $\angle UWV$ is a rt. \angle and is supp. to $\angle UWT$, $\angle UWT$ is also a rt. \angle . Thus $\angle UWV \cong \angle UWT$. By the Reflex. Prop. of \cong , $\overline{UW} \cong \overline{UW}$. Therefore $\triangle TUW \cong \triangle VUW$ by SAS.

46.
$$KN = NM$$

 $x + 6 = 2x - 2$
 $8 = x$
 $NM = 2(8) - 2 = 14$
47. $JK = LM$
 $16z - 4 = 8z + 4$
 $8z = 8$
 $LM = 8(1) + 4 = 12$
48. $JN = NL$
 $4y = 3y + 2$
 $y = 2$
 $JL = 2JN$
 $= 2(4y) = 8y$
47. $JK = LM$
 $16z - 4 = 8z + 4$
 $8z = 8$
 $Z = 1$
 $LM = 8(1) + 4 = 12$
49. $JK = LM = 12$

= 8(2) = 16

6A READY TO GO ON? PAGE 407

1.	polygon; octagon	2. not a polygon
3.	not a polygon	4. polygon; pentagon
5.	(n – 2)180° (16 – 2)180° 2520°	6. $(n)m∠ = (n - 2)180$ 6m∠ = 720 $m∠ = 120^{\circ}$
7.	14z + 8z + 7z + 11z = 3 $40z = 3$ $z = 3$	360 360 30
	Ext. \angle measures are 14(7(9) = 63°, and 11(9) = 9	$9) = 126^{\circ}, 8(9) = 72^{\circ},$ 99°.
8.	10m(ext. ∠) = 360 m(ext. ∠) = 36°	9. <i>N</i> is mdpt. of \overline{KM} . KM = 2KN = 2(13.5) = 27 cm
10.	$\overline{KJ} \cong \overline{LM}$ KJ = LM = 17 cm	11. $MN = KN = 13.5$ cm
12.	$\angle JKL$ and $\angle KJM$ are sup m $\angle JKL + m \angle KJM = 180$ m $\angle JKL + 102 = 180$ m $\angle JKL = 780$	pp.))
13.	$\angle JML \cong \angle JKL$ m $\angle JML = m \angle JKL$ = 78°	14. $\angle KLM \cong \angle KJM$ $m \angle KLM = m \angle KJM$ $= 102^{\circ}$
15.	slope from <i>B</i> to <i>C</i> : rise of rise of -5 from <i>A</i> is $1 - 3$ -3 + 1 = -2; $D = (-2, -3)$	f —5 and run of 1 5 = —4; run of 1 from <i>A</i> is —4)

16. WX = YZ**17.** *YZ* = *WX* = 11 6b - 7 = 10b - 1912 = 4bb = 3WX = 6(3) - 7 = 11**18.** $\angle X$ and $\angle W$ are supp. $m \angle X + m \angle Y = 180$ 5a - 39 + 3a + 27 = 1808*a* = 192 a = 24 $m \angle X = 5(24) - 39 = 81^{\circ}$ **19.** $m \angle W = 3(24) + 27 = 99^{\circ}$ **20.** $x = 6 \rightarrow RS = 7(6) + 6 = 48$, TV = 9(6) - 6 = 48 $y = 4.5 \rightarrow RV = 8(4.5) - 8 = 28, ST = 6(4.5) + 1 = 28$ $RS \cong TV, ST \cong RV \rightarrow RSTV$ is a \square (Thm. 6-3-2) **21.** $m = 12 \rightarrow m \angle G = 2(12) + 31 = 55^{\circ}$,

- $m ∠J = 7(12) 29 = 55^{\circ}$ $n = 9.5 \rightarrow m∠K = 12(9.5) + 11 = 125^{\circ}$ ∠K supp. to ∠G, and ∠J → GHJK is a □ (Thm. 6-3-4).
- Yes; both pairs of opp. sides are ||, so quad. is a □ by definition.
- No; one pair of opposites ▲ of the quad. are ≅.
 None of the sets of conditions for a □ are met.
- 24. No; the diagonals are divided into two segments at their point of intersection, and each segment of one diagonal is ≅ to a segment of the other diagonal. None of the sets of conditions for a □ are met.
- **25.** Slope of $\overline{CD} = \frac{4}{5}$; slope of $\overline{EF} = \frac{-4}{-5} = \frac{4}{5}$ slope of $\overline{DE} = \frac{-2}{6} = -\frac{1}{3}$; slope of $\overline{FC} = \frac{-2}{6} = -\frac{1}{3}$ Both pairs of opp. sides are \parallel , so quad. is a \square by definition.

6-4 PROPERTIES OF SPECIAL PARALLELOGRAMS, PAGES 408-415

CHECK IT OUT!

1a. Think: rect. $\rightarrow \Box$ **b.** Think: rect. \rightarrow diags. \cong $\overline{HK} \simeq \overline{GJ}$ \rightarrow opp. sides \cong HK = GJ $\overline{HJ} \cong GK$ HJ = GK = 48 in. = 2JL= 2(30.8) = 61.6 in. **2a.** *CG* = *GF* 5a = 3a + 172a = 17a = 8.5 CD = CG= 5(8.5) = 42.5**b.** Think: rhombus $\rightarrow \Box \rightarrow \text{cons.} \measuredangle$ supp. $m \angle GCD + m \angle CDF = 180$ b + 3 + 6b - 40 = 1807b = 217b = 31Think: Use Thm. 6-4-5. $m \angle GCH = \frac{1}{2} m \angle GCD$ $=\frac{1}{2}(31+3)=17^{\circ}$

3. Step 1 Show that \overline{SV} and \overline{TW} are \cong . $SV = \sqrt{11^2 + 1^2} = \sqrt{122}$ $TW = \sqrt{1^2 + 11^2} = \sqrt{122}$ Since SV = TW, $\overline{SV} \cong \overline{TW}$. Step 2 Show that \overline{SV} and \overline{TW} are ⊥. slope of $\overline{SV} = \frac{1}{11}$; slope of $\overline{TW} = \frac{-11}{1} = -11$ Since $\left(\frac{1}{11}\right)(-11) = -1$, \overline{SV} and \overline{TW} are ⊥. Step 3 Show that \overline{SV} and \overline{TW} bisect each other. mdpt. of $\overline{SV} = \left(\frac{-5+6}{2}, \frac{-4-3}{2}\right) = \left(\frac{1}{2}, -\frac{7}{2}\right)$ mdpt. of $\overline{TW} = \left(\frac{0+1}{2}, \frac{2-9}{2}\right) = \left(\frac{1}{2}, -\frac{7}{2}\right)$ Since \overline{SV} and \overline{TW} have same mdpt., they bisect each other. Diags. are \cong ⊥ bisectors of each other. 4. Possible answer:

Statements	Reasons
1. PQTS is a rhombus.	1. Given
2. \overline{PT} bisects $\angle QPS$.	2. Thm. 6-4-5
3. $\angle QPR \cong \angle SPR$	3. Def. of ∠ bisector
4. $\overline{PQ} \cong \overline{PS}$	4. Def. of rhombus
5. $\overline{PR} \cong \overline{PR}$	5. Reflex. Prop. of ≅
6. $\triangle QPR \cong \triangle SPR$	6. SAS
7. $\overline{RQ} \cong \overline{RS}$	7. CPCTC

THINK AND DISCUSS

- 1. Thm. 6-4-2; possible answer: when the thm. is written as a conditional statement, it is easier to identify the hypothesis and the conclusion.
- Same properties: 2 pairs of || sides, opp. sides ≅, opp. ▲ ≅, cons. ▲ supp., diags. bisect each other; Special properties: 4 ≅ sides, ⊥ diags., each diag. bisects a pair of opp. ▲

EXERCISES

GUIDED PRACTICE

- 1. rhombus; rectangle; square
- 2. rect. $\Box \rightarrow$ diags. bisect each other $TQ = \frac{1}{2}QS$ $= \frac{1}{2}(380) = 190 \text{ ft}$ 3. $\overline{PQ} \cong \overline{RS}$ PQ = RS = 160 ft

4. T is mdpt. of
$$\overline{QS}$$
.
 $ST = TQ = 190$ ft**5.** rect. \rightarrow diags. are \cong
 $\overline{PR} \cong \overline{QS}$
 $PR = QS = 380$ ft

6.
$$BC = CD$$

 $4x + 15 = 7x + 2$
 $13 = 3x$
 $x = 4\frac{1}{3}$
 $AB = BC$
 $= 4\left(4\frac{1}{3}\right) + 15 = 32\frac{1}{3}$
7. $\overline{AC} \perp \overline{BD}$
 $m\angle AFB = 90$
 $12y = 90$
 $y = 7.5$
 $m\angle ABC + m\angle BCD = 180$
 $m\angle ABC + 2m\angle FCD = 180$
 $m\angle ABC + 2(4(7.5) - 1) = 180$
 $m\angle ABC + 58 = 180$
 $m\angle ABC = 122^{\circ}$

8. Step 1 Show that \overline{JL} and \overline{KM} are \cong .

 $JL = \sqrt{5^2 + 7^2} = \sqrt{74}$ $KM = \sqrt{7^2 + 5^2} = \sqrt{74}$ Since JL = KM, $JL \cong \overline{KM}$. **Step 2** Show that \overline{JL} and \overline{KM} are \bot . slope of $\overline{JL} = \frac{7}{5}$; slope of $\overline{KM} = \frac{-5}{7} = -\frac{5}{7}$ Since $\left(\frac{7}{5}\right)\left(-\frac{5}{7}\right) = -1$, \overline{JL} and \overline{KM} are \bot . **Step 3** Show that \overline{JL} and \overline{KM} bisect each other. mdpt. of $\overline{JL} = \left(\frac{-3+2}{2}, \frac{-5+2}{2}\right) = \left(-\frac{1}{2}, -\frac{3}{2}\right)$ mdpt. of $\overline{KM} = \left(\frac{-4+3}{2}, \frac{1-4}{2}\right) = \left(-\frac{1}{2}, -\frac{3}{2}\right)$ Since \overline{JL} and \overline{KM} have same mdpt., they bisect each other.

Diags. are $\cong \perp$ bisectors of each other.

9. Possible answer:

Statements	Reasons
1. RECT is a rect.;	1. Given
$\underline{RX} \cong \underline{TY}$	
2. $\overline{XY} \cong \overline{XY}$	2. Reflex. Prop. of \cong
3. $RX = TY$, $XY = XY$	3. Def. of \cong segs.
4. RX + XY = TY + XY	4. Add. Prop. of =
5. $RX + XY = RY$,	5. Seg. Add. Post.
TY + XY = TX	
6. $RY = TX$	6. Subst.
7. $\overline{RY} \cong \overline{TX}$	7. Def. of \cong segs.
8. $\angle R$ and $\angle T$ are rt. \measuredangle .	8. Def. of rect.
9. $\angle R \cong \angle T$	9. Rt. ∠ ≅ Thm.
10. <i>RECT</i> is a <i>□</i> .	10. Rect. $\rightarrow \square$
11. <u>RE</u> ≅ <u>CT</u>	11. $\Box \rightarrow \text{opp. sides} \cong$
12. $\triangle REY \cong \triangle TCX$	12. SAS

PRACTICE AND PROBLEM SOLVING

10.
$$JL = 2JP$$

= 2(14.5) = 29 in.
11. $KL = JM = 25$ in.
12. $KM = JL = 29$ in.
13. $MP = \frac{1}{2}KM$
= $\frac{1}{2}(29) = 14\frac{1}{2}$ in

14.
$$WX = XY$$

 $9a - 18 = 3a + 15$
 $6a = 33$
 $a = 5.5$
 $VW = WX$
 $= 9(5.5) - 18$
 $= 31.5$
15. $m \angle XZW = 90$
 $10b - 5 = 90$
 $10b - 5 = 90$
 $10b = 95$
 $b = 9.5$
 $m \angle VWX + m \angle WVY = 180$
 $m \angle VWX + 4(9.5) + 10 = 180$
 $m \angle VWX = 132^{\circ}$
 $m \angle WYX = \frac{1}{2}m \angle VYX$
 $= \frac{1}{2}m \angle VWX$
 $= \frac{1}{2}(132) = 66^{\circ}$

16. Step 1 Show that \overline{PR} and \overline{QS} are \cong . $PR = \sqrt{11^2 + 5^2} = \sqrt{146}$ $QS = \sqrt{5^2 + 11^2} = \sqrt{146}$ Since PR = QS, $\overline{PR} \cong \overline{QS}$. Step 2 Show that \overline{PR} and \overline{QS} are \bot . slope of $\overline{PR} = \frac{-5}{11} = \frac{-5}{11}$; slope of $\overline{QS} = \frac{-11}{-5} = \frac{11}{5}$ Since $\left(-\frac{5}{11}\right)\left(\frac{11}{5}\right) = -1$, \overline{PR} and \overline{QS} are \bot . Step 3 Show that \overline{PR} and \overline{QS} bisect each other. mdpt. of $\overline{PR} = \left(\frac{-4 + 7}{2}, \frac{0 - 5}{2}\right) = \left(\frac{3}{2}, -\frac{5}{2}\right)$ mdpt. of $\overline{QS} = \left(\frac{4 - 1}{2}, \frac{3 - 8}{2}\right) = \left(\frac{3}{2}, -\frac{5}{2}\right)$

Since \overline{PR} and \overline{QS} have same mdpt., they bisect each other.

Diags. are $\cong \bot$ bisectors of each other.

17. Possible answer:

Statements	Reasons
1. <i>RHMB</i> is a rhombus. <i>HB</i> is a diag. of <i>RHMB</i> .	1. Given
2. $\overline{MH} \cong \overline{RH}^{-1}$	2. Def. of rhombus
3. <i>HB</i> bisects ∠ <i>RHM</i> .	3. Rhombus \rightarrow each diag. bisects opp. \measuredangle
4. $\angle MHX \cong \angle RHX$	4. Def. of ∠ bisector
5. $\overline{HX} \cong \overline{HX}$	5. Reflex. Prop. of ≅
6. $\triangle MHX \cong \triangle RHX$	6. SAS
7. $\angle HMX \cong \angle HRX$	7. CPCTC

18. m∠1 = 90 - 61 = 29° (comp. ▲) m∠2 = 61° (Alt. Int. ▲ Thm.) m∠3 = 90° (def. of rect.) m∠4 = m∠1 = 29° (Alt. Int. ▲ Thm.) m∠5 = 90° (def. of rect.)

19. $m \angle 1 = 90 - 36 = 54^{\circ}$ (comp. ▲) $m \angle 2 = 36^{\circ}$ (diags. $\cong \to \& \cong$ by SSS, $\& \cong$ by CPCTC) $m \angle 3 = 90 - m \angle 2 = 54^{\circ}$ (comp. ▲) $m \angle 4 = 180 - (m \angle 2 + 36) = 108^{\circ}$ (\triangle Sum Thm., Alt. Int. & Thm.) $m \angle 5 = 180 - m \angle 4 = 72^{\circ}$ (supp. ▲)

20. $m \angle 1 = 90^{\circ}$ (rect. is a rhombus, Thm. 6-4-4) $m\angle 2 = m\angle 3, m\angle 2 + m\angle 3 = 90^{\circ}$ \rightarrow m $\angle 2 =$ m $\angle 3 =$ 45° (Thm 6-4-5, comp. \measuredangle) $m \angle 4 = 45^{\circ}$ (same reasoning as $\angle 2, \angle 3$) $m \angle 5 = m \angle 3 = 45^{\circ}$ (rect. $\rightarrow \square$, Alt. Int. \measuredangle Thm.) **21.** $m \angle 2 = 27^{\circ}$ (Isosc. \triangle Thm.) $m \angle 1 = 180 - (27 + 27) = 126^{\circ} (\triangle \text{ Sum Thm.})$ $m \angle 3 = m \angle 2 = 27^{\circ}$ (Thm. 6-4-5) $m \angle 4 = m \angle 1 = 126^{\circ}$ (rhombus $\rightarrow \Box \rightarrow \text{opp.} \& \cong$) $m \angle 5 = 27^{\circ}$ (Thm. 6-4-5) **22.** $m \angle 1 = m \angle 2, m \angle 1 + m \angle 2 + 70 = 180$ \rightarrow m $\angle 1 =$ m $\angle 2 = 55^{\circ}$ (lsosc. \triangle Thm.) $m \angle 3 = m \angle 2 = 55^{\circ}$ (Thm. 6-4-5) $m \angle 4 = 70^{\circ} \text{ (rhombus } \rightarrow \Box \rightarrow \text{opp. } \measuredangle \cong)$ $m \angle 5 = m \angle 1 = 55^{\circ}$ (Thm. 6-4-5) **23.** $m \angle 1 = 90 - 26 = 64^{\circ}$ (Thm. 6-4-4, comp. \measuredangle) $m\angle 2 = m\angle 1 = 64^{\circ}$ (Thm. 6-4-5) $m \angle 3 = 26^{\circ}$ (rhombus $\rightarrow \Box$, Alt. Int. \measuredangle Thm.) $m \angle 4 = 90^{\circ}$ (Thm. 6-4-4) $m \angle 5 = m \angle 2 = 64^\circ$ (rhombus $\rightarrow \Box$, Alt. Int. \measuredangle Thm.) 24. always (Thm. 6-4-1) 25. sometimes 26. sometimes 27. sometimes **28.** always (all 4 sides \cong) **29.** always (has 4 sides) **30.** always (4 rt. <u>▲</u>) 31. sometimes 32. No; possible answer: a rhombus with int & that measure 70°, 110°, 70°, and 110° is equliateral, but it is not equiangular. A rect. with side lengths 5, 7, 5, and 7 is equiangular, but it is not equilateral. 33a.1. \triangle polygon 2.1 polygon > polygon > polygon 5. Not a polygon **b.** 1. triangle; reg. 2. quad.; reg. 3. hexagon; reg. 4. quad.; irreg. c. Shape 2 appears to be a square. Shape 4 appears to be a rhombus. d. Assume polygon is reg. $6m \angle = (6-2)180 = 720$ $m \angle = 120^{\circ}$ 34. You cannot use Thm. 6-2-1 to justify the final statement because you do not know that JKLM is a \square . That is what is being proven. Instead, Thm. 6-3-2 states that if both pairs of opp. sides of a quad. are \cong , then the quad. is a \square . So *JKLM* is a □ by Thm. 6-3-2. **b.** \overline{HG} **35a.** rect. $\rightarrow \square$ d. def. of rect. **c.** reflex. Prop. of \cong e. $\angle GHE$ f. SAS

q. CPCTC

36a. slope of
$$\overline{AB} = \frac{-2}{2} = -1$$
; slope of $\overline{CD} = \frac{2}{-2} = -1$
slope of $\overline{BC} = \frac{-5}{-5} = 1$; slope of $\overline{AD} = \frac{-5}{-5} = 1$
b. Rect.; adj. sides are \perp .

c. By Thm. 6-4-2, the diags. of a rect. are \cong .

37. Possible answer:

Statements	Reasons
1. VWXY is a rhombus.	1. Given
2. $\overline{WX} \cong \overline{YX}$	2. Def. of rhombus
3. <i>VWXY</i> is a <i>□</i> .	3. Rhombus $\rightarrow \Box$
4. $\overline{WZ} \cong \overline{YZ}$	4. $\Box \rightarrow$ diags. bisect
	each other
5. $\overline{XZ} \cong \overline{XZ}$	5. Reflex. Prop. of \cong
6. $\triangle WZX \cong \triangle YZX$	6. SSS
7. $\angle WZX \cong \angle YZX$	7. CPCTC
8. $\angle WZX$ and $\angle YZX$ are	8. Lin. Pair Thm.
supp.	
9. $\angle WZX$ and $\angle YZX$ are	9. ≅
rt. ∕≤.	
10. m $\angle WZX = m \angle YZX$	10. Def. of rt. ∠
<u>= 90°</u>	
11. $VX \perp WY$	11. Def. of ⊥

38. Possible answer: It is given that *ABCD* is a rect. By def. of a rect., $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are rt. \measuredangle . So $\angle A \cong \angle C$ and $\angle B \cong \angle D$ because all rt. \measuredangle are \cong . By Thm. 6-3-3, *ABCD* is a \Box .

39. Possible answer:

	Statements	Reasons
	1. ABCD is a rhombus.	1. Given
	2. <i>ABCD</i> is a □.	2. Rhombus $\rightarrow \Box$
	3. $\angle B \cong \angle D$, $\angle A \cong \angle C$	3. <i>□</i> → opp. <u></u> ≤ ≃
	4. $AB \cong BC \cong CD \cong DA$	4. Def. of rhombus
	5. E, F, G and H are the	5. Given
	$\overline{FB} \simeq \overline{BF} \simeq \overline{HD} \simeq \overline{DG}$	6 Def of mdpt
	$\overrightarrow{EA} \cong \overrightarrow{AH} \cong \overrightarrow{FC} \cong \overrightarrow{CG}$	o. Doi: of mapt.
	7. △BEF \cong △DGH,	7. SAS
	$\triangle AEH \cong \triangle CGF$	
	8. $EF \cong GH$, $EH \cong GF$	8. CPCTC
	9. EFGH is a \Box .	9. Quad. with opp.
		sides $\cong \rightarrow \square$
40.	5 = 2 <i>w</i> 41 .	$s = 7 \sqrt{2}$ in.
	w = 2.5 cm	P = 4s
	$\ell = w\sqrt{3} = 2.5\sqrt{3}$ cm	$= 28 \sqrt{2}$ in.
	$P = 2\ell + 2w$	≈ 39.60 in.
	$= 2(2.5) + 2(2.5\sqrt{3})$	$A = S^{-}$
	$= 5 + 5\sqrt{3}$ Cm ~ 13.66 cm	$=(7\sqrt{2})^{2}=98$ in.
	$\approx 13.00 \text{ cm}$ $A = \ell w$	
	$=(2.5\sqrt{3})(2.5)$	
	$-625\sqrt{3}$ cm	
	$\sim 10.83 \text{ cm}^2$	
	~ 10.85 cm	
42.	$s = \sqrt{3^2 + 4^2} = 5 \text{ cm}$	
	P = 4s = 20 cm	
	$A = 4\left(\frac{1}{2}(3)(4)\right) = 24 \text{ cm}^2$	

- **43a.** By def., a square is a quad. with $4 \cong$ sides. So it is true that both pairs of opp. sides are \cong . Therefore, a square is a \square by Thm. 6-3-2.
 - b. By def., a square is a quad. with 4 rt. ▲ and 4 ≅ sides. So a square is a rect., because by def., a rect. is a quad. with 4 rt. ▲.
- c. By def., a square is a quad. with 4 rt. ▲ and 4 ≅ sides. So a square is a rhombus, because by def., a rhombus is a quad. with 4 ≅ sides.
- 44. (1) Both pairs of opp. sides are ∥. Both pairs of opp. sides are ≅. Both pairs of opp. & are ≅. All pairs of cons. & are supp. Its diags. bisect each other.
 - (2) Its diags. are \cong .
 - (3) Its diags. are ⊥. Each diag. bisects a pair of opp. ▲.

TEST PREP

45. D

By Thm. 6-4-5, $\angle LKM \cong \angle JKM$. $\overline{JK} \cong \overline{JM}$, so $\triangle JKM$ is isosc.; by Isosc. \triangle Thm., $\angle JMK \cong \angle JKM$. So $m \angle J + m \angle JMK + m \angle JKM = 180$ $m \angle J + x + x = 180$ $m \angle J = (180 - 2x)^{\circ}$

46. The perimeter of $\triangle RST$ is 7.2 cm. Possible answer: Opp. sides of a rect. are \cong , so RS = QT = 2.4 and ST = QR = 1.8. Diags. of a rect. bisect each other, so QS = 2QP = 2(1.5) = 3. The diags. of a rect. are \cong , so TR = QS = 3. Therefore the perimeter of $\triangle RST$ is 2.4 + 1.8 + 3 = 7.2.

47. H

Cons. sides need not be \cong .

CHALLENGE AND EXTEND

48. Think: By Alt. Int. \measuredangle Thm. and Thm. 6-4-4, given \measuredangle . $3x^2 - 15 + x^2 + x = 90$

$$x^{2} - 15 + x^{2} + x = 90$$

 $4x^{2} + x - 105 = 0$
 $(4x + 21)(x - 5) = 0$
 $x = 5 \text{ or } -5.25$

49. Possible answer:

Given: ABCD is a rhombus. X is mdpt. of \overline{AB} . Y is mdpt. of \overline{AD} .

Prove: $\overline{XY} \parallel \overline{BD}$; $\overline{XY} \perp \overline{AC}$ **Proof:** Since *X* is the mdpt. of \overline{AB} and *Y* is the mdpt. of \overline{AD} , \overline{XY} is a midseg. of $\triangle ABD$ by def. By the \triangle Midsegment Thm., $\overline{XY} \parallel \overline{BD}$. By Thm 6-4-4, since ABCD is a rhombus then its diags. are \perp . So $\overline{AC} \perp \overline{BD}$. Since also $\overline{BD} \parallel \overline{XY}$, it follows by the \perp Transv. Thm. that $\overline{AC} \perp \overline{XY}$. **50.** Possible answer: The midseg. of a rect. is a seg. whose endpoints are mdpts. of opp. sides of the rect.

X is mdpt. of \overline{AB} .

Y is mdpt. of \overline{CD} . **Prove:** $AXYD \cong BXYC$ **Proof:** A rect. is a \Box , so ABCD is a \Box . Since opp. sides of a \Box are \cong , $\overline{AB} \cong \overline{CD}$ and $\overline{AD} \cong \overline{BC}$. Since *X* is the mdpt. of \overline{AB} , $\overline{AX} \cong \overline{XB}$. Since *Y* is the mdpt. of \overline{CD} , $\overline{DY} \cong \overline{YC}$. But because $\overline{AB} \cong \overline{CD}$, you can conclude that $\overline{AX} \cong \overline{XB} \cong \overline{DY} \cong \overline{YC}$. Opp. sides of a \Box are \parallel by def., so $\overline{AX} \parallel \overline{DY}$. Since also $\overline{AX} \cong \overline{DY}$, AXYD is a \Box by Thm. 6-3-1. But since ABCD is a rect. $\angle A$ is a rt. \angle . So $\Box AXYD$ contains a rt. \angle and is therefore a rect. By similar reasoning, you can conclude that BXYC is a rect. Since \overline{XY} $\cong \overline{XY}$ by the Reflex. Prop. of \cong , all corr. sides are \cong . Also, all rt. \measuredangle are \cong , so all corr. \bigstar are \cong . Therefore $AXYD \cong BXYC$ by def. of \cong .

51. 11 1-by-1s, 8 1-by-2s, 5 1-by-3s, 2 1-by-4s, 1 1-by-5, 6 2-by-1s, 4 2-by-2s, 2 2-by-3s, 3 3-by-1s, 2 3-by-2s, 1 3-by-3 45 rects.

SPIRAL REVIEW

- 52. change = 20 1.1c= 20 - 1.1(2 + 1.8(5)) = 7.9change is \$7.90
- **53.** T ($a = (-3)b \rightarrow a = 3(-b)$)
- **54.** F; possible answer: suppose a \odot has a diam. of 4 cm and an area of 4π cm². If diam. is doubled to 8 cm, area of \odot changes to 16π cm². New area is 4 times as large as original area.
- **55.** No; none of the conditions for a \square are met.
- 56. Yes; 135° ∠ is supp. to both of its cons. ▲, so by Thm. 6-3-4, quad. is a □.

CONSTRUCTION, PAGE 415

Check students' constructions.

6-5 CONDITIONS FOR SPECIAL PARALLELOGRAMS, PAGES 418-425

CHECK IT OUT!

- Both pairs of opp. sides of WXYZ are ≅, so WXYZ is a □. The contractor can use the carpenter's square to see if one ∠ of WXYZ is a rt. ∠. If so, then by Thm. 6-5-1, the frame is a rect.
- Not valid; by Thm. 6-5-1, if one ∠ of a □ is a rt. ∠, then the □ is a rect. To apply this thm., you need to know that ABCD is a □.

3a. Step 1 Graph CKLMN.

L(2,	4) 4 1 <i>y</i>
	2 M(3, 1)
K(-5,	$-1)^0$ 4
	-2
	V(0, −4)

Step 2 Determine if KLMN is a rect.

$$KM = \sqrt{8^2 + 2^2} = \sqrt{68} = 2\sqrt{17}$$
$$LN = \sqrt{2^2 + 8^2} = \sqrt{68} = 2\sqrt{17}$$

 $= \sqrt{68} = 2\sqrt{17}$ Since KM = LN, diags. are \cong . *KLMN* is a rect. **Step 3** Determine if *KLMN* is a rhombus.

slope of $KM = \frac{2}{8} = \frac{1}{4}$ slope of $LN = \frac{-8}{2} = -4$ Since $\left(\frac{1}{4}\right)(-4) = -1$, $\overline{KM} \perp \overline{LN}$. KLMN is a rhombus.

Since *KLMN* is a rect. and a rhombus, *KLMN* is a square.

b. Step 1 Graph *PQRS*.

P(-4	1, 6)		_
	-+	y 02	5
	4 -	1912/	
1		- 1 -	_
1	2 -	- 1 -	_
			X
S(-3 (10		
5(5,0	″	R(3, -1)
	2		_
	↓		- 1

Step 2 Determine if PQRS is a rect.

$$PR = \sqrt{7^2 + 7^2} = \sqrt{98} = 7\sqrt{2}$$

 $QS = \sqrt{5^{2}} + 5^{2} = \sqrt{50} = 5\sqrt{2}$

Since $PR \neq QS$, PQRS is not a rect. Thus PQRS is not a square.

Step 3 Determine if *PQRS* is a rhombus.

slope of $\overline{PR} = \frac{-7}{7} = -1$

slope of $\overline{QS} = \frac{7}{-5} = 1$

Since (-1)(1) = -1, $\overline{PR} \perp \overline{QS}$. PQRS is a rhombus.

THINK AND DISCUSS

- 1. rect.; rhombus; square
- 2. Possible answer:

If a quad. is a rect., then it is a □. If a □ has one rt.
 ∠, then it is a rect. Thus these defs. are equivalent.

EXERCISES

GUIDED PRACTICE

- Possible answer: If WXYZ is both a rhombus and a rect., then it is a square. All 4 sides of WXYZ are ≅. So WXYZ is a rhombus and therefore a □. If the diags. of a □ are ≅, then by Thm. 6-5-2, □ is a rect. So the club members can measure the diags., and if they are equal, WXYZ is both a rhombus and a rect., and therefore it is a square.
- Not valid; by Thm. 6-5-2, if the diags. of a □ are ≅, then the □ is a rect. To apply this thm., you need to know that ABCD is a □.
- **3.** Valid $(\overline{AB} \parallel \overline{CD}, \overline{AB} \cong \overline{CD} \to \Box, \overline{AB} \perp \overline{BC} \to \angle B \text{ a rt. } \angle \to \text{rect.})$
- 4. Step 1 Graph DPQRS.

Step 2 Determine if *PQRS* is a rect.

 $PR = \sqrt{11^2 + 3^2} = \sqrt{130}$ $QS = \sqrt{7^2 + 9^2} = \sqrt{130}$ Since PR = QS, diags. are \cong . *PQRS* is a rect. **Step 3** Determine if *PQRS* is a rhombus. slope of $\overline{PR} = \frac{-3}{11} = -\frac{3}{11}$ slope of $\overline{QS} = \frac{-9}{-7} = \frac{9}{7}$ Since $\left(-\frac{3}{11}\right)\left(\frac{9}{7}\right) \neq -1$, *PQRS* is not a rhombus. Thus *PQRS* is not a square. 5. Step 1 Graph CWXYZ.

Step 2 Determine if WXYZ is a rect.

$$WY = \sqrt{8^2 + 4^2}$$

= $\sqrt{80} = 4\sqrt{5}$
 $XZ = \sqrt{6^2 + 12^2}$
= $\sqrt{180} = 6\sqrt{5}$
Since $WY \neq XZ$, $WXYZ$ is not a rect.
Thus $WXYZ$ is not a square.
Step 3 Determine if $WXYZ$ is a rhombus.
slope of $\overline{WY} = \frac{-4}{8} = -\frac{1}{2}$
slope of $\overline{XZ} = \frac{-12}{-6} = 2$
Since $\left(-\frac{1}{2}v\right)(2) = -1$, $\overline{WY} \perp \overline{XZ}$. $WXYZ$ is a rhombus.

PRACTICE AND PROBLEM SOLVING

- **6.** Both pairs of opp. sides of PQRS are \cong , so *PQRS* is a \square . Since PZ = QZ and RZ = SZ, it follows that PR = QS by the Seg. Add. Post. Thus $\overline{PR} \cong \overline{QS}$. So the diags. of $\square PQRS$ are \cong . The frame is a rect. by Thm. 6-5-2.
- 7. valid (by Thms. 6-3-5 and 6-5-4)
- 9. Step 1 Determine if *ABCD* is a rect.

 $AC = \sqrt{14^2 + 2^2} = \sqrt{200} = 10\sqrt{2}$ $BD = \sqrt{2^2 + 14^2} = 10\sqrt{2}$ $AC = BD, \text{ so diags. are } \cong . ABCD \text{ is a rect.}$ **Step 2** Determine if *ABCD* is a rhombus. slope of $\overline{AC} = \frac{-2}{14} = -\frac{1}{7}$ slope of $\overline{BD} = \frac{-14}{-2} = 7$ Since $\left(\frac{-1}{7}\right)(7) = -1, AC \perp BD. ABCD$ is a rhombus. Since *ABCD* is a rect and a rhombus. *ABCD* is a

Since *ABCD* is a rect. and a rhombus, *ABCD* is a square.

10. Step 1 Determine if *JKLM* is a rect.

 $JL = \sqrt{12^2 + 4^2} = 4\sqrt{10}$ $KM = \sqrt{2^2 + 6^2} = 2\sqrt{10}$ $JL \neq KM, \text{ so } JKLM \text{ is not a rect., and therefore not a square.}$ **Step 2** Determine if JKLM is a rhombus. slope of $\overline{JL} = \frac{4}{12} = \frac{1}{3}$ slope of $\overline{KM} = \frac{-6}{2} = -3$ Since $\left(\frac{1}{3}\right)(-3) = -1, JL \perp KM. JKLM$ is a rhombus.

Holt McDougal Geometry

- **11.** diags. bisect each other $\rightarrow \Box$; one \angle a rt. $\angle \rightarrow$ rect.
- **12.** diags. bisect each other $\rightarrow \square$
- **13.** diags. bisect each other $\rightarrow \square$; diags. $\cong \rightarrow$ rect.; diags. $\bot \rightarrow$ rhombus; rect., rhombus \rightarrow square
- **14.** both pairs of opp. sides $\cong \rightarrow \square$
- **15.** both pairs of opp. sides $\cong \rightarrow \square$; one \angle a rt. $\angle \rightarrow$ rect.; all 4 sides $\cong \rightarrow$ rhombus; rect., rhombus \rightarrow square
- **16.** ASA \rightarrow two \triangle are $\cong \rightarrow$ all 4 sides $\cong \rightarrow \square$, rhombus
- 17. B; possible answer: it is given that ABCD is a \Box . \overline{AC} and \overline{BD} are its diags. By Thm. 6-5-2, if diags. of a \square are \cong , you can conclude that the \square is a rect. There is not enough information to conclude that ABCD is a square.
- **18.** \overline{JL} and \overline{KM} bisect each other.
- **19**. $\overline{PR} \simeq \overline{OS}$
- **20.** \overline{AB} is horiz, and \overline{AC} is vert. So \overline{BD} is vert, and \overline{CD} is horiz. D has same x-coord. as B and same y-coord. as *C*, so D = (-5, 4).
- **21.** $AB = BC = \sqrt{50}$; so *D* is opp. *B*. A is rise of 5 and run of -5 from B; so D is rise of 5 and run of -5 from C. Therefore D = (7 - 5, 1 + 5) = (2, 6).
- **22.** $AB = BC = 4\sqrt{2}$; so *D* is opp. *B*. A is rise of 4, run of -4 from B; so D is rise of 4, run of -4 from C. Therefore D = (0 - 4, -6 + 4) = (-4, -2).
- **23.** *AB* = *BC* = 5; so *D* is opp. *B*. A is rise of -4, run of 3 from B; so D is rise of -4, run of 3 from C. Therefore D = (-5 + 3, 2 - 4) = (-2, -2).
- **24.** Given \angle must be rt. \angle . **25.** All 4 sides must be \cong . 5x - 3 = 9014 - x = 2x + 55x = 939 = 3x*x* = 18.6 x = 3
- 26. Diags. must be ⊥.
 - 13x + 5.5 = 9013x = 84.5
 - x = 6.5
- 27. Rhombus; since diags. bisect each other the quad. is a \square . Since the diags. are \bot ., the quad. is a rhombus.

b. $\overline{EH} \cong \overline{EH}$ **28a.** $\Box \rightarrow \text{opp. sides} \cong$

- c. SSS
- e. CPCTC **f.** $\Box \rightarrow \text{cons.} \measuredangle \text{ supp.}$
- **h.** \Box with 1 rt. $\angle \rightarrow$ rect. **g.** \angle FEH, \angle GHE are rt. \measuredangle

d. $\angle GHE$

29a. slope of $\overline{AB} = -\frac{1}{3}$; slope of $\overline{CD} = \frac{1}{-3} = -\frac{1}{3}$ slope of $\overline{BC} = \frac{-3}{1} = -3$; slope of $\overline{AD} = \frac{-3}{1} = -3$ **b.** slope of $\overline{AC} = \frac{-4}{4} = -1$; slope of $\overline{BD} = \frac{-2}{-2} = 1$; the slopes are negative reciprocals of each other, so $\overline{AC} \perp \overline{BD}$.

c. ABCD is a rhombus, since it is a \square and its diags. are \perp (Thm. 6-5-4).

b. \overline{QT}

d. Rt. $\angle \cong$ Thm.

- 30a. RT
 - c. | lines e. SAS

f. \overline{QR}

- g. rhombus
- 31. Possible answer:

Statements	Reasons
1. <i>ABCD</i> is a □.	1. Given
$\angle A$ is a rt. \angle .	
2. m $\angle A = 90^{\circ}$	2. Def. of rt. ∠
3. $\angle A$ and $\angle B$ are supp.	3. $\Box \rightarrow cons. \& supp.$
4. m $\angle A$ + m $\angle B$ = 180°	4. Def. of supp. 🔬
5. 90° + m $\angle B$ = 180°	5. Subst.
6. m $\angle B = 90^{\circ}$	6. Subtr. Prop. of =
7. $\angle C \cong \angle A$, $\angle D \cong \angle B$	7. <i>□</i> → opp. <u>&</u> ≅
8. m $\angle C$ = m $\angle A$,	8. Def. of ≅
$m \angle D = m \angle B$	
9. m $\angle C = 90^\circ$, m $\angle D = 90^\circ$	9. Trans. Prop. of =
10. $\angle B$, $\angle C$, and $\angle D$ are	10. Def. of rt. ∠
rt. ∡.	
11. ABCD is a rect.	11. Def. of rect.

32. Possible answer: It is given that $\overline{JK} \cong \overline{KL}$. Since opp. sides of a \Box are \cong , $\overline{JK} \cong \overline{LM}$ and $\overline{KL} \cong \overline{MJ}$. By Trans. Prop. of \cong , $\overline{JK} \cong \overline{MJ}$. So \overline{JK} is \cong to each of the other 3 sides of JKLM. Therefore JKLM is a rhombus by definition.

- -1, 2, -1, so quad. is D but not. rect. Side lengths are $2\sqrt{5}$ and $2\sqrt{2}$, so quad. is not rhombus.
- *n*: y = x + 1 and *p*: y = x + 7; new slopes are 1, -1, 1, -1;new side lengths are all $3\sqrt{2}$. So the quad. becomes a square.
- 34. Possible answer:

33a.

Statements	Reasons
1. <i>FHJN</i> and <i>GLMF</i> are \blacksquare . <i>FG</i> \cong <i>FN</i>	1. Given
2. FH NJ, GL FM	2. Def. of 🗖
3. <i>FGKN</i> is a □.	3. Def. of 🗖
4. FGKN is a rhombus.	4. 🗇 with 1 pair cons.
	sides $\cong \rightarrow$ rhombus

35. A \square is a rect. if and only if its diags. are \cong ; a \square is a rhombus if and only if its diags. are \bot ; no; possible answer: Thms. 6-4-5 and 6-5-5 are not converses. The conclusion of the conditional in Thm. 6-4-5 refers to both diags. of a \Box . The hypothesis of the conditional in Thm 6-5-5 refers to only one diag. of a \square .

36. Possible answer: Draw 2 pairs of arcs from same center on same compass setting. Draw 2 lines, through center and each pair of arcs. 2 lines bisect each other and are ≅, so they are diags. of a rect. Draw sides to complete rect.

37. Possible answer: Draw seg. for 1st diag. Construct
 ⊥ bisector. Seg. between 2 pairs of arcs in
 construction is bisected by 1st seg., so segs.
 are diags. of a rhombus.

38. Possible answer: Draw seg. for 1st diag. Construct ⊥ bisector. Set compass to half length of diags., and construct 2nd diag. Diags. are ⊥ bisectors of each other and are ≅, so they are diags. of a square.

TEST PREP

39. A

(condition for Thm. 6-5-2)

40. G

Slope of \overline{WX} = slope of \overline{YZ} = 1; slope of \overline{WZ} = slope of \overline{XY} = -1; WX = $4\sqrt{2}$; XY = $7\sqrt{2}$. So WXYZ is a rect. but not a square.

41a. Think: Use Vert. 🖄 Thm.

 $m \angle KNL = m \angle JNM$ 15x = 13x + 12 2x = 12x = 6

- **b.** Yes; $m \angle JKN = 6(6) = 36^{\circ}$ and $m \angle LMN = 5(6) + 6$ = 36°, so by Conv. of Alt. Int. \measuredangle Thm., $\overline{JK} \parallel \overline{LM}$. Since $\overline{KL} \parallel \overline{JM}$, JKLM is a \Box by def.
- **c.** No; by subst., Lin. Pair Thm., and Rt. $\angle \cong$ Thm., all 4 \measuredangle at *N* are rt. \measuredangle . Since *JKLM* is a \Box , *N* is mdpt. of both diags. By SAS, $\triangle KNL \cong \triangle KNJ$, so by CPCTC, $\angle LKN \cong \angle JKN$. Therefore $m \angle JKL =$ $2m \angle JKN = 2(36) = 72^{\circ} \neq 90^{\circ}$.
- **d.** Yes; from part c., diags of *□JKLM* are ⊥. So by Thm. 6-5-4, *JKLM* is a rhombus.

CHALLENGE AND EXTEND

42. Possible answer:

Statements	Reasons
1. $\overline{AC} \cong \overline{DF}, \overline{AB} \cong \overline{DE},$	1. Given
$\overline{AB} \perp \underline{BC}, \overline{DE} \perp \overline{EF},$	
$BE \perp EF, BC \parallel EF$	
2. m $\angle ABC = 90^\circ$, m $\angle DEF$	2. Def. of ⊥
$=$ 90°, m $\angle BEF =$ 90°	
3. ∠ABC, ∠DEF, and	3. Def. of rt. ∠
∠ <i>BEF</i> are rt. .	
4. $\triangle ABC$ and $\triangle DEF$ are	4. Def. of rt. △
rt. 🔊.	
5. $\triangle ABC \cong \triangle DEF$	5. HL
6. $\overline{BC} \cong \overline{EF}$	6. CPCTC
7. <i>EBCF</i> is a □.	7. Thm. 6-3-1
8. EBCF is a rect.	8. Thm. 6-5-1

- 43a. Possible answer: If a quad. is a rect., then it has four rt. ▲. If a quad. is a rhombus, then it has four ≅ sides. By def., a quad. with four rt. ▲ and four ≅ sides is a square. Therefore statement is true.
 - b. No; possible answer: if a quad. is a rect., then it is a □. By Thm. 6-5-3, if 1 pair of cons. sides of a □ are ≅, then the □ is a rhombus. So if 1 pair of cons. sides of a rect. are ≅, it is a rhombus. If a quad. is a rect. and a rhombus, then it is a square.
 - **c.** No; possible answer: if a quad. is a rhombus, then it is a \square . By Thm. 6-5-1, if $1 \angle$ of a \square is a rt. then the \square is a rect. So if $1 \angle$ of a rhombus is a rt. \angle , it is a rect. If a quad. is a rhombus and a rect., then it is a square.

44. Diags. of the \square are \bot , so it is a rhombus.

SPIRAL REVIEW

47. $\begin{array}{c} 4 & 4 \\ 2 \\ -4 & -2 \\ -4 $
48. $c = \sqrt{8^2 + 10^2}$ = $\sqrt{164} = 2\sqrt{41}$ $P = 20 + 2\sqrt{41} + 2\sqrt{41}$ = $20 + 4\sqrt{41} \approx 45.6$
49. $c = \sqrt{(12-6)^2 + (9-4)^2} = \sqrt{61}$ $P = 6 + 9 + 12 + 4 + \sqrt{61}$ $= 31 + \sqrt{61} \approx 38.8$
50. Cons. \measuredangle are supp. So 8x + 10 + 10x + 44 = 180 18x = 126 x = 7
51. Opp. sides are \cong . So 2y + 7 = 7z + 1 5y = 9z + 2 Think: Eliminate z. 18y + 63 = 63z + 9 35y = 63z + 14 17y - 63 = 5 17y = 68 y = 4 52. Subst. for y to find z. 5(4) = 9z + 2 18 = 9z z = 2

6-6 PROPERTIES OF KITES AND TRAPEZOIDS, PAGES 427-435

CHECK IT OUT!

- 1. Perimeter of kite doubles: $P = 20 \sqrt{17} + 8 \sqrt{185} \approx 191.3$ in. Daryl needs approx. 191.3 in. of binding. $\frac{191.3}{72} \approx 2.7$ packages of binding In order to have enough, Daryl must buy 3 packages of binding.
- **2a.** Think: $\triangle PQR$ is isosc., so $\angle QPT \cong \angle QRT$. $m \angle PQR + m \angle QPT + m \angle QRT = 180$ $78 + 2m \angle QRT = 180$ $2m \angle QRT = 102$ $m \angle QRT = 51^{\circ}$
- **b.** Think: Kite \rightarrow 1 pair opp. $\measuredangle \cong$. $m \angle QPS = m \angle QRS$ $= m \angle QRT + m \angle TRS$ $= 51 + 59 = 110^{\circ}$
- **c.** Think: Use Quad. \angle Sum Thm. $m \angle PSR + m \angle QRS + m \angle PQR + m \angle QPS = 360$ $m \angle PSR + 110 + 78 + 110 = 360$ $m \angle PSR = 62^{\circ}$

3a. Think: Use Same-Side Int. & Thm., isosc. trap. → base & ≅. $m \angle G + m \angle H = 180$ $m\angle G + 49 = 180$ $m \angle G = 131^{\circ}$ $\angle F \cong \angle G$ $m \angle F = m \angle G = 131^{\circ}$ **b.** Think: Isosc. trap. \rightarrow diags. \cong . $\overline{KM} \cong \overline{JL}$ KM = JL= JN + NL= 10.6 + 14.8 = 25.4**4.** Think: 1 pair base $\measuredangle \cong \rightarrow$ trap. isosc. $\angle Q \cong \angle S$ $m \angle Q = m \angle S$ $2x^2 + 19 = 4x^2 - 13$ $32 = 2x^2$ $16 = x^2$ x = 4 or -45. Think: Use Trap. Midseg. Thm. $XY = \frac{1}{2}(EH + FG)$ $16.5 = \frac{1}{2}(EH + 25)$ 33 = EH + 258 = EH

THINK AND DISCUSS

- No; possible answer: if the legs are ||, then the trap. has two pairs of || sides. But by def., a trap. has exactly one pair of || sides, so the figure would be a □.
- Possible answer: Similarities: The endpts. of both are the mdpts. of two sides. Both are || to another side. Differences: A △ has three midsegs., while a trap. has just one. To find the length of a midseg. of a △., you find half the measure of just one side; to find the length of a midseg. of a trap., you must average the lengths of two sides.

EXERCISES

GUIDED PRACTICE

- **1.** bases: \overline{RS} and \overline{PV} ; legs: \overline{PR} and \overline{VS} ; midseg.: \overline{QT}
- Possible answer: In a □, two pairs of opp. sides are ≅. In a kite, exactly two distinct pairs of cons. sides are ≅.

3. 1 Understand the Problem

Answer has 2 parts:

- Total amount of lead needed
- Number of suncatchers that can be sealed

2 Make a Plan

 $z^2 = 4$ z = 2 or -2

Diags. of a kite are \perp , so 4 \triangle are rt. \triangle . Use Pyth. Thm. and props. of kites to find unknown side lengths. Add these lengths to find perimeter of kite. 3 Solve

 $JK = \sqrt{JH^2 + KH^2}$ $= \sqrt{2.75^2 + 2.75^2} = \sqrt{15.125}$ KL = JK = $\sqrt{15.125}$ $JM = \sqrt{JH^2 + MH^2}$ $=\sqrt{2.75^2+5.5^2}=\sqrt{37.8125}$ $LM = JM = \sqrt{37.8125}$ perimeter of $JKLM = 2\sqrt{15.125} + 2\sqrt{37.8125}$ ≈ 20.1 in. 20.1 in. of lead is needed to seal edges. One 3-ft length of lead contains 36 in. $\frac{2(36)}{2} \approx 3.6$ 20.1 3 sun catchers can be sealed. 4 Look Back To estimate perimeter, change side lengths into decimals and round. $\sqrt{15.125} \approx 4$, and $\sqrt{37.8125} \approx 6$. Perimeter of sun catcher is approx. 2(4) + 2(6) = 20. So 20.1 in. is a reasonable answer. **4.** Think: Kite \rightarrow diags. $\perp \rightarrow \angle VZY$ and $\angle VYZ$ are comp. $m \angle VZY + m \angle VYZ = 90$ $m \angle VZY + 49 = 90$ $m \angle VZY = 41^{\circ}$ **5.** Think: $\triangle XYZ$ is isosc., so $\angle VXY \cong \angle VZY$. $m \angle VXW + m \angle VXY = m \angle WXY$ $m \angle VXW + 41 = 104$ $\angle VXW = 63^{\circ}$ **6.** Think: Use Quad. \angle Sum Thm., kite \rightarrow 1 pair opp. $/s \simeq$ $m \angle XWZ + m \angle WXY + m \angle XYZ + m \angle YZW = 360$ $m \angle XWZ + 104 + 2m \angle VYZ + 104 = 360$ $m \angle XWZ + 104 + 2(49) + 104 = 360$ $m \angle XWZ = 54^{\circ}$ 7. Think: Use Same-Side 8. Think: Isosc. trap. Int. \checkmark Thm., isosc. trap. \rightarrow diags. \cong . $\overline{RT} \simeq \overline{SV}$ \rightarrow base /s \simeq . $m \angle C + m \angle D = 180$ RT = SV $74 + m \angle D = 180$ RW + TW = SV17.7 + TW = 23.3m∠*D* = 106° $\angle A \cong \angle D$ TW = 5.6 $m \angle A = m \angle D$ = 106° **9.** Think: 1 pair base $\measuredangle \cong$ **10.** Think: Diags. $\cong \rightarrow$ \rightarrow trap. isosc. trap. isosc. $\overline{MQ} \cong \overline{LP}$ $\angle E \cong \angle H$ $m \angle E = m \angle H$ MQ = LP $12z^{2} = 7z^{2} + 20$ $5z^{2} = 20$ 7y - 6 = 4y + 113y = 17

11. Think: Use Trap. Midseq. Thm.	12. Think: Use Trap. Midseg. Thm.
$XY = \frac{1}{2}(PS + QR)$	$AZ = \frac{1}{2}(DF + JK)$
$22 = \frac{1}{2}(30 + QR)$	$=\frac{\overline{1}}{2}(11.9+7.1)$
$44 = \overline{30} + QR$ $14 = QR$	$=\frac{1}{2}(19) = 9.5$

PRACTICE AND PROBLEM SOLVING

13. 1 Understand the Problem

Answer has 2 parts: Amount of iron needed to outline 1 kite Amount of iron needed for 1 complete section 2 Make a Plan Diags. of a kite are ⊥., so 4 ▲ are rt. ▲. Use Pyth. Thm. and props. of kites to find unknown side lengths. Add these lengths to find perimeter of kite. 3 Solve shorter side length = $\sqrt{7^2 + 7^2} = 7\sqrt{2}$ longer side length = $\sqrt{7^2 + 17^2} = 13\sqrt{2}$ perimeter = $2(7\sqrt{2}) + 2(13\sqrt{2})$ $=40\sqrt{2} \approx 56.6$ in. 56.6 in. of iron is needed for 1 kite. For 1 complete section, need iron for 4 kites and 1 square of side length 2(7 + 17) = 48 in. Amount of iron = 4 (40 $\sqrt{2}$) + 4(48) \approx 418.3 in. 4 Look Back To estimate perimeter, change side lengths into decimals and round. $7\sqrt{2} \approx 10$, and $13\sqrt{2} \approx 18$. Perimeter of one kite is approx. 2(10) + 2(18) = 56. So 56.6 in. is a reasonable answer. **14.** Think: Kite \rightarrow diags. \perp . $m \angle XDA + m \angle DAX = 90$ $m \angle XDA + 32 = 90$ $m \angle XDA = 58^{\circ}$ **15.** Think: Kite \rightarrow 1 pair opp. $\measuredangle \cong$. $m \angle ABC = m \angle ADC$ $= m \angle XDA + m \angle XDC$ $= 58 + 64 = 122^{\circ}$ 16. Think: Use Quad. ∠ Sum Thm. $m \angle BCD + m \angle ADC + m \angle BAD + m \angle ABC = 360$ $m \angle BCD + 122 + 2m \angle DAX + 122 = 360$ $m \angle BCD + 122 + 2(32) + 122 = 360$ $m \angle BCD = 52^{\circ}$ 17. Think: Use Same-Side Int. & Thm., Thm. 6-6-3. $m \angle L + m \angle M = 180$ $m \angle L + 118 = 180$ $m \angle L = 62^{\circ}$ $\angle Q \cong \angle L$ $m \angle Q = m \angle L = 62^{\circ}$ 18. Think: Use Thm. 6-6-5. 19. Think: 1 pair base $\& \cong$ $\overline{RJ} \cong \overline{SK}$ \rightarrow trap. isosc. RJ = SK $\angle X \cong \angle W$

= SZ + KZ $m \angle X = m \angle W$ $a^2 + 15 = 2a^2 - 65$ = 62.6 + 34 = 96.6 $80 = a^2$ $a = \pm \sqrt{80}$ $= +4\sqrt{5}$

 $y = \frac{17}{3} = 5\frac{2}{3}$

20. Think: Diags. $\cong \rightarrow$ 21. Think: Use Trap. trap. isosc. Midseg. Thm. $\overline{GJ} \cong \overline{FH}$ $PQ = \frac{1}{2}(AV + BT)$ GJ = FH $=\frac{1}{2}(4.2+3)=3.6$ 4x - 1 = 9x - 1514 = 5xx = 2.822. Think: Use Trap. Midseg. Thm. $MN = \frac{1}{2}(JT + KR)$ $52.5 = \frac{1}{2}(32.5 + KR)$ 105 = 32.5 + KR72.5 = KR23. Sometimes (opp. & supp. only when trap. is isosc.) 24. Sometimes (kites with non-≅ opp. ▲ of 30° and 150° or 20° and 150°) **25.** Never (this \rightarrow *s* both opp. pairs of \measuredangle are \cong , so quad. would be a \square , not a kite) **26.** \triangle formed by dashed line is 30°-60°-90°. So shorter leg measures a, where 6 = 2a3 = a4th edge measures 20 - 2a = 20 - 2(3) = 14 ft P = 20 + 6 + 14 + 6 = 46 ft C = 1.29P $\approx 1.3(46) \approx 60 about \$60. 27. Think: Use Same-Side Int. & Thm. $m \angle 1 + 98 = 180$ $m\angle 2 + 52 = 180$ $m \angle 1 = 82^{\circ}$ $m\angle 2 = 128^{\circ}$ 28. Think: Use Thm 6-6-2, Quad. ∠ Sum Thm. m∠1 = 116° $m \angle 1 + m \angle 2 + 116 + 82 = 360$ $116 + m\angle 2 + 116 + 82 = 360$ $m\angle 2 + 314 = 360$ $m\angle 2 = 46^{\circ}$ **29.** Think: All 4 \triangle are rt. \triangle ; left pair of \triangle is \cong . $m \angle 1 + 39 = 90$ $m\angle 2 + 74 = 90$ $m \angle 1 = 51^{\circ}$ $m\angle 2 = 16^{\circ}$ 30. Think: Top left and bottom right 🖄 of isosc. trap. are supp.; also use Alt. Int. & Thm. $(m\angle 2 + 34) + (72 + 34) = 180$ $m\angle 2 + 140 = 180$ $m\angle 2 = 40^{\circ}$ Think: By \cong \triangle , lower part of top right \angle measures 40°. By Ext. ∠ Thm. $m \angle 1 = 72 + 40 = 112^{\circ}$ 31. Think: Use Thm. 6-6-2, Quad. ∠ Sum Thm. 3x = 48*x* = 16 $m \angle 1 + 3(16) + 9(16) + 48 = 360$ $m \angle 1 + 240 = 360$ m∠1 = 120°

32. Think: Use Same-Side Int. & Thm. 40z + 5 + 10z = 18050z = 175*z* = 3.5 $18(3.5) + m \angle 1 = 180$ $63 + m \angle 1 = 180$ m∠1 = 117° **33a.** $EF = \sqrt{(3+1)^2 + (4-3)^2} = \sqrt{17}$ $FG = \sqrt{(2-3)^2 + (0-4)^2} = \sqrt{17}$ $GH = \sqrt{\left(-3 - 2\right)^2 + \left(-2 - 0\right)^2} = \sqrt{29}$ $EH = \sqrt{(-3+1)^2 + (-2-3)^2} = \sqrt{29}$ $EF \cong \overline{FG} \not\cong \overline{GH} \cong \overline{EH} \rightarrow EFGH$ is a kite. **b.** $m \angle E = m \angle G = 126^{\circ}$ **34.** $12t = \frac{1}{2}(16t + 10)$ 24t = 16t + 108t = 10t = 1.25length of midseg. = 12(1.25) = 15 $n+6 = \frac{1}{2}(n+3+3n-5)$ 35. $2n + 12 = \overline{4n} - 2$ 14 = 2n7 = nlength of midseg. = (7) + 6 = 13 $4c = \frac{1}{2}(c^2 + 6 + c^2 + 2)$ 36. $4c = c^2 + 4$ $c^2 - 4c + 4 = 0$ $(c-2)^2 = 0$ *c* = 2 length of midseg. = 4(2) = 8**37.** $m \angle PAQ + m \angle AQB +$ $m \angle PBQ + m \angle APB = 360$ $m \angle PAQ + 72 +$ $m \angle PAQ + 72 = 360$ $m \angle PAQ + 72 = 180$ $m \angle PAQ = 108^{\circ}$ $m \angle OAQ + m \angle AQB +$ $m \angle OBQ + m \angle AOB = 360$ m∠OAQ + 72 + $m \angle OAQ + 28 = 360$ $2m\angle OAQ + 100 = 360$ 2m∠OAQ = 260 $m \angle OAQ = 130^{\circ}$ $m \angle OBQ = m \angle OBP + m \angle PBQ$ $m \angle OAQ = m \angle OBP + m \angle PAQ$ $130 = m \angle OBP + 108$ $22^{\circ} = m \angle OBP$

38. Possible answer:

Given: <u>ABCD</u> is a kite with $\overline{AB} \cong \overline{AD}$ and $\overline{CB} \cong \overline{CD}$. **Prove:** \overline{AC} bisects $\angle DAB$ and $\angle DCB$. \overline{AB} bisects \overline{BD} .

Statements	Reasons	
1. $\overline{AB} \cong \overline{AD}$ and $\overline{CB} \cong \overline{CD}$. 2. $\overline{AC} \cong \overline{AC}$ 3. $\triangle ABC \cong \triangle ADC$ 4. $\underline{\angle 1} \cong \underline{\angle 2}, \underline{\angle 3} \cong \underline{\angle 4}$ 5. \overline{AC} bisects $\angle DAB$ and	 Given Reflex. Prop. of ≅ SSS CPCTC Def. of ∠ bisector 	
	 6. Reflex. Prop. of ≅ 7. SAS 8. CPCTC 9. Def. of seg. bisector 	

39. Possible answer:

Given: ABCD is a kite with $\overline{AB} \cong \overline{CB}$ and $\overline{AD} \cong \overline{CD}$. **Prove:** $\overline{BD} \perp \overline{AC}$

It is given that $\overline{AB} \cong \overline{CB}$ and $\overline{AD} \cong \overline{CD}$. This means that *B* and *D* are equidistant from *A* and from *C*. By the Conv. of the \perp Bisector Thm., if a pt. is equidist. from the endpts. of a seg., then it is on the \perp bisector of the seg. Through any two pts. there is exactly one line, so the line containing *B* and *D* must be the \perp bisector of \overline{AC} . Therefore $\overline{BD} \perp \overline{AC}$.

 \overline{AB} and \overline{CD} are vert.; \overline{BC} is horiz.; slope of $\overline{DA} = \frac{3}{-6} = -\frac{1}{2}$ Exactly 2 sides are ||, so quad. is a trap.

$$AB = BC = 4; CD = \sqrt{3^2 + 7^2} = \sqrt{58};$$

$$DA = \sqrt{7^2 + 3^2} = \sqrt{58}$$

Exactly 2 pairs of cons. sides are \cong , so quad is a kite.

Diags. have equations y = x and x = 1; they intersect at (1, 1), and bisect each other, but are not \perp . Therefore quad is a \square .

 \overline{AD} and \overline{BC} are horiz.; $AB = \sqrt{4^2 + 6^2} = 2\sqrt{13}$, $\underline{CD} = \sqrt{4^2 + 6^2} = 2\sqrt{13}$

- $\overline{AD} \parallel \overline{BC}$ and $\overline{AB} \cong \overline{CD}$; so quad. is an isosc. trap.
- **44.** Extend \overline{BA} and \overline{CD} to meet in center of window, X. $\angle AXC = 360 \div 8 = 45^{\circ}$; by Isosc. \triangle Thm., $\angle XBC \cong \angle XCB$, so $m \angle XBC = \frac{1}{2}(180 - m \angle AXC) = 67.5^{\circ}$ Since $\overline{BC} \parallel \overline{AD}$, by Corr. \measuredangle Post., $m \angle B = m \angle C = 67.5^{\circ}$ by Lin. Pair Thm., $m \angle A = m \angle D = 180 - 67.5^{\circ} = 112.5^{\circ}$
- 45. Possible answer: Common props.: exactly one pair of || sides; two pairs of cons. supp.; length of midseg. is the average of the lengths of the bases; special props. of isosc. trap.: legs; two pairs of base ; diags.

46a.
$$\left(\frac{0+2a}{2}, \frac{0+2b}{2}\right) = (a, b)$$

b. $\left(\frac{c+c+2d}{2}, \frac{2b+0}{2}\right) = (c+d, b)$
c. slope of $\overline{QR} = \frac{2b-2b}{c-2a} = 0$
slope of $\overline{PS} = \frac{0-0}{c+2d-0} = 0$
slope of $\overline{MN} = \frac{b-b}{c+d-a} = 0$
All 3 segs. are ||.
d. $QR = c - 2a; PS = c + 2d - 0 = c + 2d;$
 $MN = c + d - a; c + d - a = \frac{1}{2}(c - 2a + c + 2d),$
so $MN = \frac{1}{2}(PS + QR)$

48. H

TEST PREP 47. B

$$\frac{B}{2}(6+26) = 16$$

. 18
By △ Midseg. Thm.,
$$DE = \frac{1}{2}(24) = 12$$
 in
midseg. length $= \frac{1}{2}(12 + 24) = 18$ in.

CHALLENGE AND EXTEND

50. Possible answer:

	Statements	Reasons			
	1. WXYZ is a trap. with $\overline{XZ} \simeq \overline{YW}$.	1. Given			
	2. Draw \overline{XU} through X so that $\overline{XU} \perp \overline{WZ}$. Draw \overline{YV} through Y so that $\overline{YV} \perp \overline{WZ}$. 3. m $\angle XUZ = 90^{\circ}$,	 2. There is exactly 1 line through a pt. not on a line that is ⊥ to that line. 3. Def. of ⊥ lines 			
	$m \angle YVW = 90^{\circ}$ 4. $\angle XUZ$ and $\angle YVW$ are rt. \measuredangle .	4. Def. of rt. ∠			
	5. $\triangle XUZ$ and $\triangle YVW$ are rt. \triangle .	5. Det. of rt. \triangle			
	6. XU YV	6. 2 lines \perp to 3rd line \rightarrow 2 lines			
	7. $\overline{XY} \parallel \overline{WZ}$	7. Def. of trap.			
	8. XYVU is a \square .	8. Def. of 🗆			
	$9. XU \cong YV$ $10 \land XUZ \simeq \land YVW$	9. $\square \rightarrow \text{opp. sides} \cong$			
	11. $\angle XZW \cong \angle YWZ$	11. CPCTC			
	12. $\overline{WZ} \cong \overline{WZ}$	12. Reflex. Prop. of \cong			
	13. $\Delta XZW \cong \Delta YWZ$	13. SAS			
	14. $XW \cong YZ$	14. CPCTC			
	15. WXYZ is an isosc. trap. 15. Def. of isosc. tra				
51.	BC + AD = 2(8.62) = 17.24 P = AB + BC + CD 27.4 = 2AB + 17.24	and <i>CD</i> = AB + AD			

$$27.4 = 2AB + 17.24$$

$$10.16 = 2AB$$

$$5.08 = AB$$

$$AB = CD = 5.08 \text{ in.}$$

$$BC = 2AB$$

$$= 2(5.08) = 10.16 \text{ in.}$$

$$AD = 17.24 - BC$$

$$= 17.24 - 10.16 = 7.08 \text{ in.}$$

52. $\frac{x}{20\%} = \frac{25}{10}$ $x = \frac{25}{10}(20\%)$ $= 50\% = \frac{1}{2}$ **53.** Think: Height of \triangle is min. dist. from apex to base. 2*x* < *x* + 6 *x* < 6 **54.** 3*x* − 10 < 30 + *x* 2*x* < 40 *x* < 20 55. slope of $\overline{AB} = \frac{2}{2} = 1$; slope of $\overline{CD} = \frac{-2}{-2} = 1$ slope of $\overline{BC} = \frac{-2}{2} = -1$; slope of $\overline{AD} = \frac{-2}{2} = -1$ So \square is a rect. $AB = BC = CD = AD = \sqrt{2^2 + 2^2} = 2\sqrt{2}$ So \square is a rhombus. Rect., rhombus \rightarrow square; so \square is a square. **56.** slope of $\overline{AB} = \frac{4}{3}$; slope of $\overline{CD} = \frac{-4}{-3} = \frac{4}{3}$ \overline{BC} and \overline{AD} are vert. Cons. edges are not \perp , so \square is not a rect. and therefore not a square. $\overline{AB} = \sqrt{3^2 + 4^2} = 5; \ \overline{CD} = \sqrt{3^2 + 4^2} = 5$ $\overline{BC} = |0 - 5| = 5; \ \overline{AD} = |-4 - 1| = 5$ Since all four sides are \cong ., \square is a rhombus.

CONSTRUCTION

SPIRAL REVIEW

1. Choose *B* and *D* both above or both below \overline{AC} .

READY TO GO ON? PAGE 437

1. Think:
$$\overline{QS}$$
 and \overline{RT}
bisect each other at *T*.
 $SP = \frac{1}{2}QS$
 $= \frac{1}{2}(80.5) = 40.25$
3. Think: Diags. are \cong .
 $\overline{TR} \cong \overline{QS}$
 $TR = QS = 80.5$
5. $\overline{GH} \cong \overline{GK} \cong \overline{HJ}$
 $GH = GK$
 $6a - 7 = 3a + 9$
 $3a = 16$
 $HJ = GK$
 $= (16) + 9 = 25$
6. Think: Rhombus \rightarrow diags. are \perp
 $m \angle JLH = 4b - 6$
 $90 = 4b - 6$
 $90 = 4b - 6$
 $96 = 4b$
 $24 = b$
Think: All $4 \triangleq$ are \cong .
 $m \angle HJG + m \angle JHK = 90$
 $m \angle HJG + m \angle JHK = 90$
 $m \angle HJG + 2(24) + 11 = 90$
 $m \angle HJG = 31^{\circ}$
 $m \angle GHJ = m \angle GHK + m \angle JHK$
 $= 2(2(24) + 11) = 118^{\circ}$

7.	Statements	Reasons		
	1. \overrightarrow{QSTV} is a rhombus. $\overrightarrow{PT} \cong \overrightarrow{RT}$	1. Given		
	2. \overrightarrow{TQ} bisects $\angle PTR$.	2. rhombus \rightarrow each diag. bisects opp. \measuredangle		
	3. ∠QTP ≅ ∠QTR	3. Def. of ∠ bisector		
	4. $\overline{QT} \cong \overline{QT}$	4. Reflex. Prop. of ≅		
	5. <u>△P</u> QT <u>≅</u> △ RQT	5. SAS		
	6. <i>PQ</i> ≅ <i>RQ</i>	6. CPCTC		

- not valid; By Thm. 6-5-4, if the diags. of a □ are ⊥, then the □ is a rhombus. But you need to know that ABCD is a □.
- 9. valid (By Thm. 6-3-1, *ABCD* is a □. By Thm. 6-5-2, *ABCD* is a rect.)
- **10.** $WY = \sqrt{9^2 + 3^2} = 3\sqrt{10}$; $XZ = \sqrt{3^2 + 9^2} = 3\sqrt{10}$ The diags. are \cong , so WXYZ is a rect. slope of $\overline{WY} = \frac{-3}{9} = -\frac{1}{3}$; slope of $\overline{XZ} = \frac{-9}{3} = -3$ The diags. are not \bot , so WXYZ is not a rhombus. Therefore WXYZ is not a square.
- **11.** $MP = \sqrt{7^2 + 3^2} = \sqrt{58}$; $NQ = \sqrt{3^2 + 7^2} = \sqrt{58}$ The diags. are \cong , so MNPQ is a rect. slope of $\overline{MP} = -\frac{3}{7}$; slope of $\overline{NQ} = \frac{-7}{-3} = \frac{7}{3}$ The diags. are \perp , so MNPQ is a rhombus. Rect., rhombus $\rightarrow MNPQ$ is a square.
- **12.** Possible answer: Since \overline{VX} is a midseg. of $\triangle TWY$, $\overline{VX} \parallel \overline{TZ}$ by \triangle Midseg. Thm. Similarly, $\overline{XZ} \parallel \overline{TV}$. So TVXZ is a \square by def. V is mdpt. of \overline{TW} ; thus $TV = \frac{1}{2}TW$ by def. of mdpt. Similarly, $TZ = \frac{1}{2}TY$. It is given that $\overline{TW} \cong \overline{TY}$, so TW = TY by def. of \cong segs. By subst., $TZ = \frac{1}{2}TW$, and thus TZ = TV. By def. of \cong segs., $\overline{TZ} \cong \overline{TV}$. Since TVXZ is a \square with 1 pair of cons. sides \cong , TVXZ is a rhombus.

13. Think:
$$\overrightarrow{EG}$$
 bisects $\angle FEH$
 $m \angle FEJ = \frac{1}{2}m \angle FEH$
 $= \frac{1}{2}(62) = 31^{\circ}$

14. Think: $\angle HEJ$ is \cong to $\angle FEJ$ and comp. to $\angle EHJ$. $m \angle HEJ + m \angle EHJ = 90$ $m \angle FEJ + m \angle EHJ = 90$ $31 + m \angle EHJ = 90$ $m \angle EHJ = 59^{\circ}$

15. Think: $\angle HFG$ is comp. to $\angle FGJ$ and \cong to $\angle FHG$. $m \angle HFG + m \angle FGJ = 90$ $m \angle FHG + m \angle FGJ = 90$ $m \angle FGJ = 22^{\circ}$ **16.** $m \angle EHG = m \angle EHJ + m \angle FHG$ $= 59 + 68 = 127^{\circ}$

17. Think: Use Same-Side Int. \measuredangle Thm., isosc. trap. \rightarrow base $\measuredangle \cong$. $m \angle U + m \angle T = 180$ $m \angle U + 77 = 180$ $m \angle U = 103^{\circ}$ $\angle R \cong \angle U$ $m \angle R = m \angle U = 103^{\circ}$

18. Think: Isosc. trap
$$\rightarrow$$
 diags. \cong
 $WY \cong VX$
 $WZ + YZ = VX$
 $WZ + 34.2 = 53.4$
 $WZ = 19.2$

19. length of midseg. $=\frac{1}{2}(43 + 23) = 33$ in.

STUDY GUIDE: REVIEW, PAGES 438-441

1. vertex of a polygon	2. convex		
3. rhombus	4. base of a trapezoid		
LESSON 6-1			
5. not a polygon	6. polygon; triangle		
7. polygon; dodecagon	8. irregular; concave		
9. irregular; convex	10. regular; convex		
11. (<i>n</i> – 2)180 (12 – 2)180	12. $(n)m\angle = (n-2)180$ $20m\angle = (18)180$		

 $20m \angle = 3240$

 $m \angle = 162^{\circ}$

13. (*n*)m(ext. ∠) = 360 4m(ext. ∠) = 360 m(ext. ∠) = 90°

1800°

14. $m \angle A + ... + m \angle F = (6 - 2)180$ 8s + 7s + 5s + 8s + 7s + 5s = 720 40s = 720 s = 18 $m \angle A = m \angle D = 8(18) = 144^{\circ};$ $m \angle B = m \angle E = 7(18) = 126^{\circ};$ $m \angle C = m \angle F = 5(18) = 90^{\circ}$

LESSON 6-2

15. Think: Diags. bisect
each other.
 16.
$$\overline{AD} \cong \overline{BC}$$
 $BE = \frac{1}{2}BD$
 $AD = BC = 62.4$
 $BE = \frac{1}{2}(75) = 37.5$
 17. $ED = BE = 37.5$
 18. $\angle CDA \cong \angle ABC$
 $m\angle CDA = m\angle ABC$
 $m\angle CDA = m\angle ABC$
 $m\angle CDA = m\angle ABC$
 $= 79^{\circ}$

 19. Think: Cons. \measuredangle supp.
 $m\angle BCD = 180$
 $m\angle BCD = 101^{\circ}$
 $m\angle BCD = 101^{\circ}$

 20. $\angle BCD \cong \angle DAB$
 $m\angle DAB = 101^{\circ}$

 21. $WX = YZ$
 22. $YZ = 5(3.5) - 8 = 9.5$
 $b + 6 = 5b - 8$
 $14 = 4b$
 $3.5 = b$
 $WX = 3.5 + 6 = 9.5$

 23. $m\angle W + m\angle X = 180$
 24. $m\angle X = 14(9) = 126^{\circ}$
 $6a + 14a = 180$
 $20a = 180$
 $a = 9$
 $m\angle W = 6(9) = 54^{\circ}$

- **25.** $\angle Y \cong \angle W$ **26.** $\angle Z \cong \angle X$ $m \angle Y = m \angle W = 54^{\circ}$ $m \angle Z = m \angle X = 126^{\circ}$
- 27. Slope from *R* to *S* is rise of 2 and run of 10; rise of 2 from *V* to *T* is -7 + 2 = -5; run of 10 from *V* to *T* is -4 + 10 = 6; *T* = (6, -5)

28.	Statements	Reasons	
	1. <i>GHLM</i> is a □.	1. Given	
	$\angle L \cong \angle JMG$		
	2. ∠ $G \cong ∠L$	2. <i>□</i> → opp. <u>&</u> ≅	
	3. $\angle G \cong \angle JMG$	3. Trans. Prop. of \cong	
	4. $\overline{GJ} \cong \overline{MJ}$	4. Conv. Isosc. \triangle Thm.	
	5. $\triangle GJM$ is isosc.	5. Def. of isosc. △	

LESSON 6-3

- **29.** $m = 13 \rightarrow m \angle G = 9(13) = 117^{\circ}$; $n = 27 \rightarrow m \angle A = 2(27) + 9 = 63^{\circ}$, $m \angle E = 3(27) 18 = 63^{\circ}$ Since $117^{\circ} + 63^{\circ} = 180^{\circ} \angle G$ is supp. to $\angle A$ and $\angle E$, so one ∠ of *ACEG* is supp. to both of its cons. ▲. *ACEG* is a \square by Thm. 6-3-4.
- **30.** $x = 25 \rightarrow m \angle Q = 4(25) + 4 = 104^{\circ}$, $m \angle R = 3(25) + 1 = 76^{\circ}$; so ∠Q and ∠R are supp. $y = 7 \rightarrow QT = 2(7) + 11 = 25$, RS = 5(7) - 10 = 25By Conv. of Same-Side Int. \measuredangle Thm., $\overline{QT} \parallel \overline{RS}$; since $\overline{QT} \cong \overline{RS}$, QRST is a \square by Thm. 6-3-1.
- **31.** Yes; The diags. bisect each other. By Thm. 6-3-5 the quad. is a □.
- 32. No; By Conv. of Alt. Int. ▲ Thm., one pair of opp. sides is ||, but other pair is ≅. None of conditions for a □ are met.
- **33.** slope of $\overline{BD} = \frac{2}{10} = \frac{1}{5}$; slope of $\overline{FH} = \frac{-2}{-10} = \frac{1}{5}$ slope of $\overline{BH} = \frac{-6}{1} = -6$; slope of $\overline{DF} = \frac{-6}{1} = -6$ Both pairs of opp. sides have the same slope, so $\overline{BD} \parallel \overline{FH}$ and $\overline{BH} \parallel \overline{DF}$; by def., BDFH is a \Box .

LESSON 6-4

34.	$\overline{AB} \cong \overline{CD}$ $AB = CD = 18$	35.	AC = =	= 2 <i>CE</i> = 2(19.8) :	= 39.6
36.	$\overline{BD} \cong \overline{AC}$ $BD = AC = 39.6$	37.	<u>BE</u> ≘ BE =	≝ CE = CE = 19	9.8
38.	WX = WZ 7a + 1 = 9a - 6 7 = 2a 3.5 = a WX = 7(3.5) + 1 = 2	25.5			
39.	$\overline{XV} \cong \overline{VZ}$ $XV = VZ$ $= 3(3.5) = 10.5$				
40.	$\overline{XY} \cong \overline{WX}$ $XY = WX = 25.5$	41.	XZ = =	= 2 <i>XV</i> = 2(10.5) =	= 21

8n + 18 = 908n = 72*n* = 9 Think: \overrightarrow{RT} bisects $\angle SRV$. $m \angle TRS = \frac{1}{2} m \angle SRV$ $=\frac{1}{2}(9(9) + 1) = 41^{\circ}$ **43.** $m \angle RSV + m \angle TRS = 90$ $m \angle RSV + 41 = 90$ $m \angle RSV = 49^{\circ}$ $\angle STV \cong \angle SRV$ 44 $m \angle STV = m \angle SRV$ $= 9(9) + 1 = 82^{\circ}$ **45.** $m \angle TVR + m \angle STV = 180$ $m \angle TVR + 82 = 180$ $m \angle TVR = 98^{\circ}$ **46.** Think: All 4 \triangle are 47. Think: All 4 & are isosc. A. ≃ rt. &. $2m\angle 1 + m\angle 2 = 180$ $m\angle 2 = m\angle 5 = 53^{\circ}$ $2m\angle 3 + m\angle 4 = 180$ m∠3 = 90° By Lin. Pair Thm., $m \angle 4 + m \angle 5 = 90$ $m \angle 4 + 53 = 90$ $m\angle 2 + m\angle 4 = 180$ By Alt. Int & Thm., $m \angle 4 = 37^{\circ}$ $m\angle 3 = 33^{\circ}$ $\angle 1 \cong \angle 4$ $m \angle 1 = m \angle 4 = 37^{\circ}$ $2(33) + m \angle 4 = 180$ $m\angle 4 = 114^{\circ}$ $m\angle 2 + 114 = 180$ m∠2 = 66° $2m\angle 1 + 66 = 180$ 2m∠1 = 114 m∠1=57° By Alt. Int & Thm., $\angle 1 \cong \angle 5$ $m \angle 5 = m \angle 1 = 57^{\circ}$ **48. Step 1** Show that \overline{RT} and \overline{SU} are congruent. $RT = \sqrt{((-3) - (-5))^2 + (-6 - 0)^2} = 2\sqrt{10}$ $SU = \sqrt{((-7) - (-1))^2 + ((-4) - (-2))^2} = 2\sqrt{10}$ Since RT = SU, $\overline{RT} \cong \overline{SU}$ **Step 2** Show that \overline{RT} and \overline{SU} are perpendicular. slope of RT: $\frac{-6-0}{-3-(-5)} = -3$ slope of $SU: \frac{-4 - (-2)}{-7 - (-1)} = \frac{1}{3}$ since $-3\left(\frac{1}{3}\right) = -1$, $\overline{RT} \perp \overline{SU}$ **Step 3** Show that \overline{RT} and \overline{SU} bisect each other. mdpt. of *RT*: $\left(\frac{-5 + (-3)}{2}, \frac{0 + (-6)}{2}\right) = (-4, -3)$ mdpt. of *SU*: $\left(\frac{-1 + (-7)}{2}, \frac{-2 + (-4)}{2}\right) = (-4, -3)$ Since \overline{RT} and \overline{SU} have the same midpoint, they bisect each other. The diagonals are congruent

perpendicular biectors of each other.

42. m∠*TZV* = 90

49. Step 1 Show that \overline{EG} and \overline{FH} are congruent. $EG = \sqrt{(5-2)^2 + (-2-1)^2} = 3\sqrt{2}$ $FH = \sqrt{(2-5)^2 + (-2-1)^2} = 3\sqrt{2}$ Since EG = FH. $\overline{EG} \cong \overline{FH}$ **Step 2** Show that \overline{EG} and \overline{FH} are perpendicular. slope of EG: $\frac{-2-1}{5-2} = -1$ slope of *FH*: $\frac{-2-1}{2-5} = 1$ since -1(1) = -1, $\overline{EG} \perp \overline{FH}$ **Step 3** Show that \overline{EG} and \overline{FH} bisect each other.

ļ

(

(

(

(

mdpt. of *RT*: $\left(\frac{2+5}{2}, \frac{1+(-2)}{2}\right) = \left(\frac{7}{2}, -\frac{1}{2}\right)$ mdpt. of SU: $\left(\frac{5+2}{2}, \frac{1+(-2)}{2}\right) = \left(\frac{7}{2}, -\frac{1}{2}\right)$

Since \overline{EG} and \overline{FH} have the same midpoint, they bisect each other. The diagonals are congruent perpendicular biectors of each other.

LESSON 6-5

- 50. Not valid; by Thm. 6-5-2, if the diags. of a \Box are \cong , then the \square is a rect. By Thm. 6-5-4, if the diags. of a \square are \bot , then the \square is a rhombus. If a quad. is a rect. and a rhombus, then it is a square. But to apply this line of reasoning, you must first know that EFRS is a \square .
- **51.** valid (diags. bisect each other $\rightarrow \square$: \square with diags. $\cong \rightarrow$ rect.)
- **52.** valid (*EFRS* is a \Box by def.; \Box with 1 pair cons. sides $\cong \rightarrow$ rhombus)
- **53.** $BJ = \sqrt{8^2 + 8^2} = 8\sqrt{2}$; $FN = \sqrt{6^2 + 6^2} = 6\sqrt{2}$ Diags. are ≇, so □ is not a rect. Therefore □ is not a square. slope of $\overline{BJ} = \frac{8}{8} = 1$; slope of $\overline{FN} = \frac{-6}{6} = -1$ Diags. are \perp , so \square is a rhombus.
- **54.** $DL = \sqrt{12^2 + 6^2} = 6\sqrt{5}$; $HP = \sqrt{6^2 + 12^2} = 6\sqrt{5}$ Diags. are \cong , so \square is a rect. slope of $\overline{DL} = \frac{6}{12} = \frac{1}{2}$; slope of $\overline{HP} = \frac{-12}{-6} = 2$ Diags. are not \perp , so \square is not a rhombus. Therefore \square is not a square.
- **55.** $QW = \sqrt{12^2 + 8^2} = 4\sqrt{13}; TZ = \sqrt{8^2 + 12^2} = 4\sqrt{13}$ Diags. are \cong , so \square is a rect. slope of $\overline{QW} = \frac{8}{12} = \frac{2}{3}$; slope of $\overline{TZ} = \frac{-12}{8} = -\frac{3}{2}$ Diags. are \perp , so \square is a rhombus. Rect., rhombus $\rightarrow \square$ is a square.

LESSON 6-6

56. Think: All 4 \triangle are rt. \triangle ; left pair of \triangle is \cong , as is right pair. $m \angle XYZ = 2m \angle XYV$ $= 2(90 - m \angle VXY)$ = 2(90 - 58) $= 64^{\circ}$

57.
$$m\angle ZWV = \frac{1}{2}m\angle ZWX$$

 $=\frac{1}{2}(50) = 25^{\circ}$
58. $m\angle VZW = 90 - m\angle ZWV$
 $= 90 - 25 = 65^{\circ}$
59. $m\angle WZY = m\angle VZW + m\angle VZY$
 $= m\angle VZW + m\angle VXY$
 $= 65 + 58 = 123^{\circ}$
60. Think: Use Same-Side Int. \measuredangle Thm.,
isosc. trap. \rightarrow base $\measuredangle \cong$.
 $m\angle V + m\angle T = 180$
 $m\angle V + 126^{\circ}$
 $\angle R \cong \angle V$
 $m\angle R = M\angle V = 126^{\circ}$
 $\angle S \cong \angle T$
 $m\angle S = m\angle T = 54^{\circ}$
61. Think: Isosc. trap. \rightarrow diags. \cong
 $\overline{BH} \cong \overline{EK}$
 $BZ + ZH = EK$
 $BZ + ZH = EK$
 $BZ + 70 = 121.6$
 $BZ = 51.6$
62. $MN = \frac{1}{2}(AD + JG)$
 $= \frac{48.5}$
 $3.5 = EQ$
64. $\angle P \cong \angle Y$
 $m\angle P = m\angle Y$
 $8n^2 - 11 = 6n^2 + 7$
 $2n^2 = 18$
 $n^2 = 9$
 $n = \pm 3$
65. $\overrightarrow{MZP} = m\angle Y$
 $BC = CD = \sqrt{6^2 + 3^2} = 3\sqrt{2}$
 $BC = CD = \sqrt{6^2 + 3^2} = 3\sqrt{5}$
Exactly 2 pairs of cons. sides $\cong \rightarrow$ kite.
66. $\overrightarrow{MZ} = \frac{4}{2} + \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{2}}{4} = \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{2}}{4$

(not isosc.)

 \overline{AD} and \overline{BC} are horiz., but $AD = 2 + 6 = 8 \neq 4 = BC$ $\overline{AD} \parallel \overline{BC}, \overline{AD} \not\cong \overline{BC} \rightarrow \text{trap. (not } \square)$ $AB = \sqrt{2^2 + 3^2} = \sqrt{13}; CD = \sqrt{2^2 + 3^2} = \sqrt{13}$ $\overline{AB} \cong \overline{CD}, \text{ not } \square \rightarrow \text{isosc. trap}$

CHAPTER TEST, PAGE 442

- 1. not a polygon 2. polygon; decagon Think: Use Quad. ∠ Sum Thm. $m \angle A + m \angle B + m \angle C + m \angle D = 360$ 12n + 14n + 8n + 11n = 36045*n* = 360 *n* = 8 $m \angle A = 12(8) = 96^{\circ}, m \angle B = 14(8) = 112^{\circ},$ $m \angle C = 8(8) = 64^{\circ}, m \angle D = 11(8) = 88^{\circ}$ **4.** (9 – 2)180 **5.** $15m(ext. \angle) = 360$ (7)180 m(ext. \angle) = 24° 1260° 6. Think: Z is mdpt. of FH. Think: Cons. ▲ are supp. FH = 2HZ $m \angle FEH + m \angle EHG = 180$ $m \angle FEH + 145 = 180$ = 2(9) = 18 $m\angle FEH = 35^{\circ}$ 7. Think: Opp. sides are \cong . Think: Cons. \measuredangle are supp. JM = KL $m \angle M + m \angle L = 180$ 4y - 7 = y + 116x - 1 + 2x + 9 = 1803y = 188*x* = 172 *x* = 21.5 y = 6KL = 6 + 11 = 17 $m \angle L = 2(21.5) + 9 = 52^{\circ}$ 8. Slope from S to R is rise of 4 and run of 1; from P to Q: rise of 4 is -3 to -3 + 4 = 1, run of 1
- is -2 to -2 + 1 = -1; so coords. of Q = (-1, 1). 9. $a = 4 \rightarrow XN = 3(4) = 12$, NZ = 4 + 8 = 12 $b = 3 \rightarrow WN = 4(3) + 3 = 15$, NY = 5(3) = 15So *N* is mdpt. of \overline{XZ} and \overline{WY} , and therefore diags.

bisect each other. By Thm. 6-3-5, WXYZ is a .

11. Possible answer: slope of
$$\overline{KL} = \frac{3}{9} = \frac{1}{3}$$
; slope of \overline{ST}
 $= \frac{-3}{-9} = \frac{1}{3}$
slope of $\overline{KT} = -\frac{4}{3}$; slope of $\overline{LS} = -\frac{4}{3}$
 $\overline{KL} \parallel \overline{ST}$ and $\overline{KT} \parallel \overline{LS} \rightarrow KLST$ is a \Box .
12. $PT = \frac{1}{2}PC$ $\overline{PM} \cong \overline{LC}$
 $= \frac{1}{2}LM$
 $= \frac{1}{2}(23) = 11.5$

13. Think: All $4 \triangleq \text{are} \cong \text{rt.} \triangleq$. $m \angle NQK = 90$ 7z + 6 = 90 7z = 84 z = 12 $m \angle HEQ = 90 - m \angle EHQ$ $= 90 - m \angle ENQ$ $= 90 - (5(12) + 1) = 29^{\circ}$ $m \angle EHK = 2m \angle EHQ$ $= 2m \angle ENQ$ $= 2(5(12) + 1) = 122^{\circ}$

- **14.** Not valid; possible answer: *MNPQ* is a rhombus by def. However, to show that *MNPQ* is a square, you need to know that *MNPQ* is also a rect.
- **15.** valid (*MNPQ* is a \square by def.; diags $\cong \rightarrow MNPQ$ is a rect.)
- **16.** $AE = \sqrt{12^2 + 8^2} = 4\sqrt{13}$; $CG = \sqrt{4^2 + 6^2} = 2\sqrt{13}$ Diags. are ≇, so *ACEG* is not a rect. Therefore *ACEG* is not a square. slope of $\overline{AE} = \frac{-8}{12} = -\frac{2}{3}$; slope of $\overline{CG} = \frac{-6}{-4} = \frac{3}{2}$ Diags. are ⊥, so *ACEG* is a rhombus.
- **17.** $PR = \sqrt{7^2 + 1^2} = \sqrt{50}$; $QS = \sqrt{5^2 + 5^2} = \sqrt{50}$ Diags. are \cong , so *PQRS* is a rect. slope of $\overline{PR} = \frac{1}{-7} = -\frac{1}{7}$; slope of $\overline{QS} = \frac{-5}{-5} = 1$ Diags. are not \bot , so *PQRS* is not a rhombus. Therefore *PQRS* is not a square.
- **18.** $m \angle FBN = m \angle FBR + m \angle RBN$ $= 90 - m \angle BFR + 90 - m \angle RNB$ $= 90 - m \angle JFR + 90 - \frac{1}{2}m \angle JNB$ $= 180 - 43 - \frac{1}{2}(68) = 103^{\circ}$ **19.** $\overline{MS} \cong \overline{PV}$ **20.** $XY = \frac{1}{2}(HR + GS)$ MY + YS = PV MY + 24.7 = 61.1 MY = 36.4HR = 27 in.