CHAPTER Solutions Key		
4 Triangle Congruence		
ARE YOU READY? PAGE 213		
1. F	2. D	
3. B	4. A	
5. E	6. 35°	
7. 90°		
8–11. Check students' dra 12. $\frac{9}{2}x + 7 = 25$	awings.	
$\frac{-7}{\frac{9}{2}x} = \frac{-7}{18}$		
$x = \frac{2(18)}{9} = 4$		
13. $3x - \frac{2}{3} = \frac{4}{3}$		
3 3 2 2		
$\frac{+3}{3x} - \frac{+3}{2}$		
13. $3x - \frac{2}{3} = \frac{4}{3}$ $\frac{+\frac{2}{3}}{3x} = \frac{+\frac{2}{3}}{2}$ $x = \frac{2}{3}$		
14. $x - \frac{1}{5} = \frac{12}{5}$		
$+\frac{1}{5}$ $+\frac{1}{5}$		
$x = \frac{13}{5} = 2\frac{3}{5}$		
15. $2y = 5y - \frac{21}{2}$	16. <i>t</i> is 3 times m.	
<u>_</u>	t = 3m	
$\frac{-5y}{-3y} = \frac{-5y}{-\frac{21}{2}}$		
$y = \frac{7}{2} = 3\frac{1}{2}$		
2 2	10 500 + twice wie 000	
17. Twice <i>x</i> is 9 ft. $2x = 9$	18. 53° + twice <i>y</i> is 90°. 53 + 2y = 90	
19. Price <i>r</i> is price <i>p</i> less	20. Half <i>j</i> is <i>b</i> plus 5 oz.	
25. r = p - 25	$\frac{1}{2}j = b + 5$	
4-1 CLASSIFYING TRIANGLES,		
PAGES 216-22		
CHECK IT OUT! PAGE		
1. \angle FHG and \angle EHF are	; complementary.	

- $m\angle FHG + m\angle EHF = 90^{\circ}$ $m \angle FHG + 30^\circ = 90^\circ$ $m \angle FHG = 60^{\circ}$ All & are equal. So \triangle *FHG* is equiangular by definition.
- **2.** *AC* = *AB* = 15 No sides are congruent. So $\triangle ACD$ is scalene.

3. Step 1 Find the value of y. $\overline{FG} \cong \overline{GH}$ FG = GH3y - 4 = 2y + 33y = 2y + 7y = 7Step 2 Substitute 7 for y. FG = 3y - 4GH = 2y + 3= 3(7) - 4 = 17= 2(7) + 3 = 17FH = 5y - 18= 5(7) - 18 = 17**4a.** *P* = 3(7) = 21 in. **b.** P = 3(10) = 30 in. $100 \div 21 = 4\frac{16}{100}$ $100 \div 30 = 3\frac{1}{3}$ 21 4 triangles 3 triangles

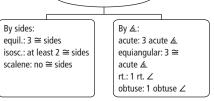
THINK AND DISCUSS, PAGE 218

1. \overline{DE} , \overline{EF} , $\angle E$; \overline{EF} , \overline{FD} , $\angle F$; \overline{FD} , \overline{DE} , $\angle D$

2. Possible answer:

- **3.** No; all 3 \angle in an acute \triangle must be acute, but they do not have to have the same measure; possible answer:
- **4.** In an equil. rt. \triangle , all 3 sides have the same length. By the Pyth. Thm., the 3 side lengths are related by the formula $c^2 = a^2 + b^2$, making the hyp. c greater than either a or b. So the 3 sides cannot have the same length.

5.



△ Classification

EXERCISES, PAGES 219-221 **GUIDED PRACTICE, PAGE 219**

- 1. An equilateral triangle has three congruent sides.
- 2. One angle is obtuse and the other two angles are acute.
- **3.** $\angle DBC$ is a rt. \angle . So $\triangle DBC$ is a rt. \triangle .
- **4.** $\angle ABD$ and $\angle DBC$ are supp. $\angle ABD + \angle DBC = 180^{\circ}$

 $\angle ABD + 90 = 180$ $\angle ABD = 90^{\circ}$ $\angle ABD$ is a rt. \angle . So $\triangle ABD$ is a rt. \triangle .

5. $m \angle ADC = m \angle ADB + m \angle BDC$ $= 31 + 70 = 101^{\circ}$ $\angle ADC$ is obtuse. So $\triangle ADC$ is an obtuse \triangle .

21. PQ + PR + QR = 60**6.** EG = 3 + 3 = 6, **7.** EF = 3, EH = 8, EH = 8. GH = 8FH = 7.4 $PQ + PQ + \frac{4}{3}PQ = 60$ $\overline{EH} \cong \overline{GH}$ No sides are congruent, Exactly two sides are so $\triangle EFH$ is scalene. $\frac{10}{3}PQ = 60$ \cong , so $\triangle EGH$ is isosc. **8.** *GF* = 3, *GH* = 8, *FH* = 7.4 $PQ = \frac{3}{10}(60) = 18 \text{ ft}$ No sides are congruent, so $\triangle HFG$ is scalene. PR = PQ = 18 ft 9. Step 1 Find y. $QR = \frac{4}{3}PQ = \frac{4}{3}(18) = 24$ ft 6y = 4y + 122y = 12**22.** 150 \div 60 = $2\frac{1}{2}$; 2 complete trusses y = 6Step 2 Find side lengths. 23. 24. Not possible: an \triangle is equilateral, so all three side lengths = 6y = 36. equiangular \triangle has only 10. Step 1 Find x. acute 🕭. 2x + 1.7 = x + 2.42x = x + 0.725. 26. x = 0.7Step 2 Find side lengths. x + 2.4 = 0.7 + 2.4 = 3.12x + 1.7 = 2(0.7) + 1.7 = 1.4 + 1.7 = 3.127. Not possible: an 28. 4x + 0.5 = 4(0.7) + 0.5 = 2.8 + 0.5 = 3.3equiangular \triangle must 11. Perimeter is also be equilateral. P = 3 + 3 + 1.5= 7.5 cm**29.** Let *x* represent each side length. $50 \div 7.5 = 6\frac{2}{3}$ earrings x + x + x = 1053x = 105The jeweler can make 6 earrings. x = 35 in. PRACTICE AND PROBLEM SOLVING, **30.** $\overline{AB} \cong \overline{AC}$, so \triangle is isosc. PAGES 219-221 $\angle BAC$ and $\angle CAD$ are supp., and $\angle CAD$ is acute; so ∠BAC is obtuse. **12.** m∠*BEA* = 90°; rt. △ △ABC is isosc. obtuse. **13.** $m \angle BCD = 60 + 60 = 120^{\circ}$; obtuse **31.** $\overline{AC} \cong \overline{CD}$ and $m \angle ACD = 90^\circ$. **14.** $m \angle ABC = 30 + 30 = 60^{\circ}$ $m \angle ABC = m \angle ACB = m \angle BAC$; equiangular △ACD is isosc. rt. **32.** (4x - 1) + (4x - 1) + x = 34**15.** $\overline{PS} \cong \overline{ST} \cong \overline{PT}$; equilateral 9x - 2 = 34**16.** $\overline{PS} \cong \overline{RS}$, so PS = RS = 10; RP = 17; isosc. 9x = 36**17.** *RT* = 10 + 10 = 20, *RP* = 17, *PT* = 10; scalene x = 4**33a.** E 22nd Street side = $\frac{1}{2}$ (Broadway side) - 8 19. Step 1 Find x. 18. Step 1 Find z. 3z - 1 = z + 58x + 1.4 = 2x + 6.8 $=\frac{1}{2}(190) - 8 = 87$ ft 3z = z + 68x = 2x + 5.42z = 66x = 5.45th Avenue side = 2(E 22nd Street side) - 1z = 3*x* = 0.9 = 2(87) - 1Step 2 Find side Step 2 Find side = 173 ft lengths. lengths. **b.** All sides are different, so \triangle is scalene. z + 5 = 3 + 5 = 88x + 1.4 = 8(0.9) + 1.43z - 1 = 3(3) - 1 = 8= 7.2 + 1.4**34.** No; yes; not every isosc. \triangle is equil. because only 4z - 4 = 4(3) - 4 = 8= 8.62 of the 3 sides must be \cong . Every equil. \triangle has 3 \cong 2x + 6.8 = 2(0.9) + 6.8sides, and the def. of an isosc. \triangle requires that at = 1.8 + 6.8least 2 sides be \cong . = 8.6S: equil, acute 36. S; scalene, acute 20a. Check students' b. Possible answer: scalene obtuse drawings. $\overline{XY}, \overline{YZ}, \overline{XZ}, \angle X, \angle Y,$ LΖ

37. A; 3 congruent sides, so always satisfies isosceles \triangle classification \land

38. $s = \frac{P}{3}$. The perimeter of an equil. \triangle is 3 times the length of any 1 side, or P = 3s. Solve this formula for *s* by dividing both sides by 3.

39. Check students' constructions.

40a.
$$DE^2 = AD^2 + AE^2$$

 $= 5^2 + \left(\frac{10}{2}\right)^2$
 $= 25 + 25 = 50$
 $DE = \sqrt{50} = 5\sqrt{2}$ cm
Think: $\overline{CE} \cong \overline{DE}$.
 $CE = DE = 5\sqrt{2}$ cm
b. Think: DE bisects $\angle AEF$.
 $m\angle DEF = \frac{1}{2}m\angle AEF$
 $= \frac{1}{2}(90) = 45^{\circ}$
Think: $\angle CEF \cong \angle DEF$, so $m\angle CEF =$
 $m\angle DEC = m\angle DEF + m\angle CEF$
 $= 45 + 45 = 90^{\circ}$
c. $CE = DE$ and $m\angle DEC = 90^{\circ}$
isosc. \triangle ; rt. \triangle

41. D

3s = P $3s = 36\frac{2}{3}$ $s = \frac{1}{3}\left(36 + \frac{2}{3}\right)$ $= 12\frac{2}{9} \text{ in.}$

By graphing,

RT ≅ RS ≇ ST, so

 $\triangle LMN$ has no rt. \angle .

45°.

 $\triangle RST$ is isosc.

42. F

44. 3

$$P = AB + BC + AC$$

$$= \frac{1}{2}x + \frac{1}{4} + \frac{5}{2} - x + \frac{1}{2}x + \frac{1}{4}$$

$$= \left(\frac{1}{2} - 1 + \frac{1}{2}\right)x + \frac{1}{4} + \frac{5}{2} + \frac{1}{4}$$

$$= 3$$

CHALLENGE AND EXTEND, PAGE 221

45. It is an isosc. △ since 2 sides of the △ have length a. It is also a rt. △ since 2 sides of the △ lie on the coord. axes and form a rt. ∠.

46.	Statements	Reasons
	1. $\triangle ABC$ is equiangular.	1. Given
	2. $\angle A \cong \angle B \cong \angle C$	2. Def. of equiangular △
	3. <i>EF</i> ∥ <i>AC</i>	3. Given
	4. ∠BEF \cong ∠A, ∠BFE \cong ∠C	4. Corr. ∕ Post.
	5. $\angle BEF \cong \angle B$, $\angle BFE \cong \angle B$	5. Trans. Prop. of \cong
	6. ∠ <i>BEF</i> \cong ∠ <i>BFE</i>	6. $▲ \cong$ to the same ∠ are \cong .
	7. △EFB is equiangular.	7. Def. of equiangular \triangle

47. Think: Each side has the same measure. Use the expression y + 10 for this measure. 3(y + 10) = 21

$$3y + 30 = 21$$

 $3y = -9$

v = -3

48. Step 1 Find *x*. Think: Average of x + 12, 3x + 4, and 8x - 16 is 24.

 $\frac{1}{3}(x + 12 + 3x + 4 + 8x - 16) = 24$ $\frac{1}{3}(12x) = 24$ 4x = 24x = 6Step 2 Find side lengths. x + 12 = 6 + 12 = 182x + 4 = 2(6) + 4 = 22

3x + 4 = 3(6) + 4 = 22 8x - 16 = 8(6) - 16 = 32longest side - average = 32 - 24 = 8

SPIRAL REVIEW, PAGE 221

- **49.** $y = x^2$ **50.** y = x
- **51.** $y = x^2$

52. F; skew lines do not intersect and are not parallel.

54. F; Possible answer: 30 has a 0 in the ones place, but 30 is not a multiple of 20.

55. y = 4x + 2 has slope 4. Line is || to y = 4x.

56.
$$4y = -x + 8$$

 $y = -\frac{1}{4}x + 2$
Slope is neg. reciprocal of 4. Line is \perp to $y = 4x$

57.
$$\frac{1}{2}y = 2x$$

 $y = 4x$
Line coincides with $y = 4x$

58.
$$-2y = \frac{1}{2}x$$

 $y = -\frac{1}{4}x$
Slope is neg. reciprocal of 4. Line is \perp to $y = 4x$.

GEOMETRY LAB: DEVELOP THE TRIANGLE SUM THEOREM, PAGE 222

TRY THIS, PAGE 222

- **1.** When placed together, the three \measuredangle form a line.
- 2. yes
- **3.** $m \angle A + m \angle B + m \angle C = 180^{\circ}$
- **4.** The sum of the \angle measures in a \triangle is 180°.

4-2 ANGLE RELATIONSHIPS IN TRIANGLES, PAGES 223-230

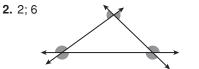
CHECK IT OUT! PAGES 224-226

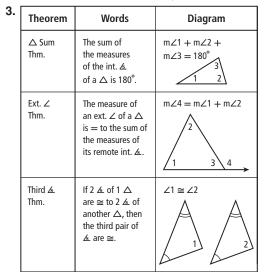
1. Step 1 Find m∠NKM. $m \angle KMN + m \angle MNK + m \angle NKM = 180^{\circ}$ $88 + 48 + m \angle NKM = 180$ $136 + m \angle NKM = 180$ $m \angle NKM = 44^{\circ}$ Step 2 Find m∠MJK. $m \angle JMK + m \angle JKM + m \angle MJK = 180^{\circ}$ $44 + 104 + m \angle MJK = 180$ $148 + m \angle MJK = 180$ $m \angle MJK = 32^{\circ}$ **2a.** Let acute \measuredangle be $\angle A$, $\angle B$, with m $\angle A = 63.7^{\circ}$. $m \angle A + m \angle B = 90^{\circ}$ $63.7 + m \angle B = 90$ $m \angle B = 26.3^{\circ}$ **b.** Let acute \leq be $\angle C$, $\angle D$, with m $\angle C = x^{\circ}$. $m \angle C + m \angle D = 90^{\circ}$ $x + m \angle D = 90$ $m \angle D = (90 - x)^{\circ}$ **c.** Let acute \measuredangle be $\angle E$, $\angle F$, with m $\angle E = 48\frac{2}{F}^{\circ}$. $m \angle E + m \angle F = 90$ $48\frac{2}{5} + m\angle F = 90$ $m \angle F = 41 \frac{3}{5}$ ° **3.** $m \angle ACD = m \angle ABC + m \angle BAC$ 6z - 9 = 90 + 2z + 14z = 100z = 25 $m \angle ACD = 6z - 9 = 6(25) - 9 = 141^{\circ}$ 4. $\angle P \cong \angle T$ $m \angle P = m \angle T$ $2x^2 = 4x^2 - 32$ $-2x^2 = -32$ $x^2 = 16$ So m $\angle P = 2x^2 = 32^\circ$. Since $m \angle T = m \angle P$, $m \angle T = 32^{\circ}$.

THINK AND DISCUSS, PAGE 226

Since $\angle 3$ and $\angle 4$ are supp. \measuredangle , $m\angle 3 + m\angle 4 = 180^{\circ}$ by def. $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$ by the \triangle Sum Thm. By the trans. Prop. of =, $m\angle 3 + m\angle 4 = m\angle 1 + m\angle 2 + m\angle 3$. Subtract $m\angle 3$

from both sides. Then $m \angle 4 = m \angle 1 + m \angle 2$.





EXERCISES, PAGES 227–230 GUIDED PRACTICE, PAGE 227

- 1. Possible answers: think "out of the way"
- **2.** Exterior \angle is next to $\angle E$. So the remote interior \measuredangle are $\angle D$ and $\angle F$.
- 3. auxiliary lines
- 4. Think: Use $\triangle \angle$ Sum Thm. 180 = 3y + 13 + 2y + 2 + 5y - 5 180 = 10y + 10 170 = 10yy = 17
- 5. Deneb: $3y + 13 = 3(17) + 13 = 64^{\circ}$ Altair: $2y + 2 = 2(17) + 2 = 36^{\circ}$ Vega: $5y - 5 = 5(17) - 5 = 80^{\circ}$

6.
$$20.8 + m \angle = 90$$

 $m \angle = 69.2^{\circ}$
7. $y + m \angle = 90$
 $m \angle = (90 - y)^{\circ}$

8.
$$24\frac{2}{3} + m \angle = 90$$

 $m \angle = 65\frac{1}{3}^{\circ}$

9. $m \angle M + m \angle N = m \angle NPQ$ 3y + 1 + 2y + 2 = 485y + 3 = 485y = 45*y* = 9 $m \angle M = 3y + 1 = 3(9) + 1 = 28^{\circ}$ **10.** $m \angle K + m \angle L = m \angle HJL$ 7x + 6x - 1 = 9013x = 91x = 7 $m \angle L = 6x - 1 = 6(7) - 1 = 41^{\circ}$ **11.** $m \angle A + m \angle B = 117$ $65 + m \angle B = 117$ $m \angle B = 52^{\circ}$ $m \angle A + m \angle B + m \angle BCA = 180$ 117 + m∠*BCA* = 180 $m \angle BCA = 63^{\circ}$ **12.** $\angle C \cong \angle F$ 13. $\angle S \cong \angle U$ $m \angle C = m \angle F$ $m \angle S = m \angle U$ $4x^2 = 3x^2 + 25$ 5x - 11 = 4x + 9 $x^2 = 25$ *x* = 20 $m\angle C = 4x^2 = 100^\circ$ $m \angle S = 5x - 11$ $m \angle F = m \angle C = 100^{\circ}$ = 5(20) - 11 $= 89^{\circ}$ $m \angle U = m \angle S = 89^{\circ}$ 14. $\angle C \cong \angle Z$ $m \angle C = m \angle Z$ 4x + 7 = 3(x + 5)4x + 7 = 3x + 15*x* = 8 $m \angle C = 4x + 7 = 4(8) + 7 = 39^{\circ}$ $m \angle Z = m \angle C = 39^{\circ}$ PRACTICE AND PROBLEM SOLVING, PAGES 228-229 **15.** $m \angle A + m \angle B + m \angle P = 180$ $39 + 57 + m \angle P = 180$ $96 + m \angle P = 180$ $m \angle P = 84^{\circ}$ **16.** $76\frac{1}{4} + m\angle = 90$ **17.** 2*x* + m∠ = 90 $m \angle = 13 \frac{3}{2}$ $m \angle = (90 - 2x)^{\circ}$ **18.** 56.8 + m∠ = 90 $m\angle = 33.2^{\circ}$ 19. Think: Use Ext. ∠ Thm. $m \angle W + m \angle X = m \angle XYZ$ 5x + 2 + 8x + 4 = 15x - 1813x + 6 = 15x - 1824 = 2xx = 12 $m \angle XYZ = 15x - 18$ $= 15(12) - 18 = 162^{\circ}$ **20.** Think: Use Ext. \angle Thm and subst. $m \angle C = m \angle D$. $m \angle C + m \angle D = m \angle ABD$ $2m\angle D = m\angle ABD$ 2(6x - 5) = 11x + 1

21. Think: Use Third & Thm. $\angle N \cong \angle P$ $m \angle N = m \angle P$ $3y^2 = 12y^2 - 144$ $-9y^2 = -144$ $v^2 = 16$ $m \angle N = 3v^2 = 3(16) = 48^\circ$ $m \angle P = m \angle N = 48^{\circ}$ 22. Think: Use Third 🔬 Thm. $\angle Q \cong \angle S$ $m \angle Q = m \angle S$ $2x^2 = 3x^2 - 64$ $64 = x^2$ $m \angle Q = 2x^2 = 2(64) = 128^\circ$ $m \angle S = m \angle Q = 128^{\circ}$ **23.** Think: Use $\triangle \angle$ Sum Thm. $m \angle 1 + m \angle 2 + m \angle 3 = 180$ x + 4x + 7x = 18012x = 180*x* = 15 $m \angle 1 = x = 15^{\circ}$ $m\angle 2 = 4x = 60^{\circ}$ $m \angle 3 = 7x = 105^{\circ}$

24.	Statements	Reasons
	1. $△$ <i>DEF</i> with rt. $∠$ <i>F</i>	1. Given
	2. m $\angle F = 90^{\circ}$	2. Def. of rt. ∠
	$3. m \angle D + m \angle E + m \angle F = 180^{\circ}$	3. \triangle Sum Thm.
	$4. m \angle D + m \angle E + 90^{\circ}$ $= 180^{\circ}$	4. Subst.
	5. m∠D + m∠E = 90°	5. Subtr. Prop.
	6. ∠ <i>D</i> and ∠ <i>E</i> are comp.	6. Def. of comp. 🔬

25. Proof 1:

Statements	Reasons
1. $\triangle ABC$ is equiangular	1. Given
2. m $\angle A = m \angle B = m \angle C$	2. Def. of equilangular
$3. m \angle A + m \angle B + m \angle C = 180^{\circ}$	3. \triangle Sum Thm.
4. $m \angle A + m \angle A + m \angle A = 180^{\circ}$ $m \angle B + m \angle B + m \angle B = 180^{\circ}$ $m \angle C + m \angle C + m \angle C = 180^{\circ}$	4. Subst. prop
5. $3m \angle A = 180^{\circ}$, $3m \angle B = 180^{\circ}$, $3m \angle C = 180^{\circ}$	5. Simplify.
6. $m \angle A = 60^\circ$, $m \angle B = 60^\circ$, $m \angle C = 60^\circ$	6. Div. Prop. of =

Proof 2:

 $\angle A$, $\angle B$, and $\angle C$ are all congruent, so their measures are equal. The sum of the three \angle measures is 180°, by \triangle Sum Thm. Therefore, 3 • (common \angle measure) = 180°. So the common \angle measure is 60°. That is, m $\angle A$ = m $\angle B$ = m $\angle C$ = 60°.

= 6x - 5

 $m \angle C = m \angle D$

12x - 10 = 11x + 1

x = 11

 $= 6(11) - 5 = 61^{\circ}$

26. Step 1 Write an equation. $m \angle 1 = 1 \frac{1}{4} m \angle 2$ **Step 2** Since the acute \measuredangle of a rt. \triangle are comp. write and solve another equation. $m \angle 1 + m \angle 2 = 90$ $1\frac{1}{4}m\angle 2 + m\angle 2 = 90$ $\frac{9}{4}$ m $\angle 2 = 90$ $m \angle 2 = \frac{4}{9}(90) = 40^{\circ}$ **Step 3** Find the larger acute \angle , m \angle 1. $m \angle 1 = 1 \frac{1}{4} m \angle 2 = \frac{5}{4} (40) = 50^{\circ}$ 27. Statements Reasons 1. $\triangle ABC$, $\triangle DEF$, $\angle A \cong \angle D$, 1. Given $\angle B \cong \angle E$ 2. $m \angle A + m \angle B + m \angle C = 180^{\circ}$ 2. △ Sum Thm. 3. $m \angle C = 180^\circ - m \angle A - m \angle B$ 3. Subtr. Prop. of =4. $m \angle D + m \angle E + m \angle F = 180^{\circ}$ 4. △ Sum Thm. 5. $m \angle F = 180^\circ - m \angle D - m \angle E$ 5. Subtr. Prop. of =6. $m \angle A = m \angle D$, $m \angle B = m \angle E$ 6. Def. of \cong \measuredangle 7. $m \angle F = 180^\circ - m \angle A - m \angle B$ 7. Subst. 8. m $\angle F = m \angle C$ 8. Trans. Prop. of =9. $\angle F \cong \angle C$ 9. Def. of \cong \measuredangle 28. Statements Reasons 1. $\triangle ABC$ with ext. $\angle ACD$ 1. Given 2. $m \angle A + m \angle B + m \angle ACB$ 2. \triangle Sum Thm. $= 180^{\circ}$ 3. $m \angle ACB + m \angle ACD = 180^{\circ}$ 3. Lin. Pair Thm. 4. $m \angle ACD = 180^{\circ} - m \angle ACB$ 4. Subtr. Prop. of =5. $m \angle ACD = (m \angle A + m \angle B +$ 5. Subst. $m \angle ACB$) – $m \angle ACB$ $6.m \angle ACD = m \angle A + m \angle B$ 7. Simplify. 29. Think: Use Alt. Int. & Thm. $m \angle WUX + m \angle UXZ = 180$ $m \angle WUX + 90 = 180$ $m \angle WUX = 90^{\circ}$ So $\triangle UWX$ is a rt. \triangle .

So $\triangle UWX$ is a rt. \triangle . $m \angle UXW + m \angle XWU = 90$ $m \angle UXW + 54 = 90$ $m \angle UXW = 36^{\circ}$ **30.** $\angle XWU$, $\angle UWY$, and $\angle YWV$ are supp. \measuredangle . $m \angle XWU + m \angle UWY + m \angle YWV = 180$ $54 + m \angle UWY + 78 = 180$ $m \angle UWY + 132 = 180$ $m \angle UWY = 48^{\circ}$ 31. Think: Use Third & Thm. $\angle WUY \cong \angle ZXY$ $\angle UYW \cong \angle XYZ$ $\angle WZX \cong \angle UWY$ $m \angle WZX = m \angle UWY = 48^{\circ}$ **32.** $\angle XYZ$ and $\angle WZX$ are acute \measuredangle in a rt. \triangle . $m \angle XYZ + m \angle WZX = 90$ $m \angle XYZ + 48 = 90$ $m \angle XYZ = 42^{\circ}$ **33.** Let $\angle 1$, $\angle 2$, and $\angle 3$ be internal \measuredangle . Let $\angle 4$, $\angle 5$, and $\angle 6$ be external $\angle 6$. Think: Use Ext. ∠ Thm. $m \angle 4 = m \angle 1 + m \angle 2$ $m \angle 1 = m \angle 2 = 60^{\circ}$ So $m \angle 4 = 60 + 60 = 120^{\circ}$. Likewise, $m \angle 5 = m \angle 6 = 120^{\circ}$. Ext. \angle sum = m \angle 4 + m \angle 5 + m \angle 6 = 360° 34. Think: Use Third 🛦 Thm. $\angle SRQ \cong \angle RST$ $m \angle SRQ = m \angle RST = 37.5^{\circ}$ **35.** Let acute \angle measures be x° and $4x^{\circ}$. x + 4x = 905x = 90x = 18Smallest \angle measure is $x^\circ = 18^\circ$. 36a. hypotenuse **b.** $x^{\circ} + y^{\circ} + 90^{\circ} = 180^{\circ}$ **c.** $x^{\circ} + y^{\circ} = 90$ **d.** $z^{\circ} = x^{\circ} + 90^{\circ}$ x and y are comp. \angle measures. **e.** x + y = 90z = x + 9037 + y = 90z = 37 + 90*z* = 127° $y = 53^{\circ}$ 37.

The ext. \measuredangle at the same vertex of a \triangle are vert. \measuredangle . Since vert. \measuredangle are \cong , the 2 ext. \pounds have the same measure.

38.	Statements	Reasons
	1. $\overline{AB} \perp \overline{BD}, \overline{BD} \perp \overline{CD}, \ \angle A \cong \angle C$	1. Given
	2. ∠ <i>ABD</i> and ∠ <i>CDB</i> are rt. ≰	2. Def. of \perp lines
	3. m∠ <i>ABD</i> = m∠ <i>CBD</i>	3. Def. of rt. 🖄
	4. ∠ABD \cong ∠CDB	4. Rt. ∠ \cong Thm.
	5. ∠ADB \cong ∠CBD	5. Third \land Thm.
	6. <i>AD</i> ∥ <i>CB</i>	6. Conv. of Alt. Int.

 Check students' sketches. Ext. ∠ measures = sums of remote int. ∠ measures: 155°, 65°, and 140°.

40a. m∠FCE =
$$\frac{1}{2}$$
m∠DCE
= $\frac{1}{2}$ (90) = 45°
m∠FCB = $\frac{1}{2}$ m∠FCE
= $\frac{1}{2}$ (45) = 22.5°
b. m∠CBE + m∠BEC + m∠BCE = 180
m∠CBE + 90 + 22.5 = 180
m∠CBE + 112.5 = 180
m∠CBE = 67.5°
TEST PREP, PAGE 230
41. C
128 = 71 + x
x = 57
42. F
(2s + 10) + 58 + 66 = 180

2s + 134 = 180

 $m \angle A + m \angle B = m \angle BCD$

43. D

2*s* = 46

 $m \angle B = m \angle BCD - m \angle A$

sum of the \angle measures of a \triangle is 180°, so

subsituting 20 for x in each expression.

all acute \measuredangle by def. Thus the \triangle is acute.

46. A rt. \triangle is formed. The 2 same-side int. \triangle are

(30, 30, 120), (30, 60, 90), (60, 60, 60)

supp., so the 2 & formed by their bisectors must be

comp. That means the remaining \angle of the \triangle must

must be greater than either ∠. Therefore, it cannot

47. Since an ext. \angle is = to a sum of 2 remote int. \measuredangle , it

CHALLENGE AND EXTEND, PAGE 230

45. $117 = (2y^2 + 7) + (61 - y^2)$

be \cong to a remote int. \angle .

48. Possible sets of ∠ measures:

 $117 = y^2 + 68$ $49 = y^2$

measure 90°.

Probability $=\frac{2}{3}$

y = 7 or -7

s = 23

44. Let 2x, 3x, and 4x represent the \angle measures. The

 $2x + 3x + 4x = 180^{\circ}$. Solving the eqn. for the

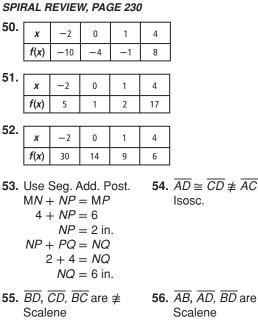
value of x, yields x = 20. Find each measure by

2x = 2(20) = 40; 3x = 3(20) = 60; 4x = 4(20) = 80.

Since all of the \land measure less than 90°, they are

49. Let
$$m \angle A = x^{\circ}$$
.
 $m \angle B = 1\frac{1}{2}(x) - 5$
 $m \angle C = 2\frac{1}{2}(x) - 5$
 $m \angle A + m \angle B + m \angle C = 180$
 $x + 1\frac{1}{2}(x) - 5 + 2\frac{1}{2}(x) - 5 = 180$
 $5x - 10 = 180$
 $5x = 190$
 $x = 38$

$$m \angle A = x^\circ = 38^\circ$$



- 56. AB, AD, BD are ≇
- **57.** $\overline{AD} \cong \overline{CD} \cong \overline{AC}$ Equilateral

4-3 CONGRUENT TRIANGLES, PAGES 231-237

CHECK IT OUT! PAGES 231-233

- **1.** Angles: $\angle L \cong \angle E$, $\angle M \cong \angle F$, $\angle N \cong \angle G$, $\angle P \cong \angle H$ Sides: $\overline{LM} \cong \overline{EF}$, $\overline{MN} \cong \overline{FG}$, $\overline{NP} \cong \overline{GH}$, $\overline{LP} \cong \overline{EH}$
- $\overline{AB} \cong \overline{DE}$ 2a. 2x - 2 = 62x = 8x = 4
- **b.** Since the acute \measuredangle of a rt. \triangle are comp.

$$m \angle B + m \angle C = 90$$

$$53 + m \angle C = 90$$

$$m \angle C = 37^{\circ}$$

$$\angle F \cong \angle C$$

$$m \angle F = m \angle C = 37^{\circ}$$

3.	Statements	Reasons
	1. $\angle A \cong \angle D$	1. Given
	2. ∠BCA \cong ∠ECD	2. Vert.
	3. $\angle ABC \cong \angle DEC$	3. Third 🛦 Thm.
	4. $\overline{AB} \cong \overline{DE}$	4. Given
	5. \overline{AD} bisects \overline{BE} , and \overline{BE} bisects \overline{AD} .	5. Given
	6. $\overline{BC} \cong \overline{EC}, \ \overline{AC} \cong \overline{BC}$	6. Def. of bisector
	7. $\triangle ABC \cong \triangle DEC$	7. Def. of \cong \triangle

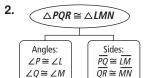
Statements 4.

Reasons

ŀ	otatemento	neusonis
	1. <i>JK</i> ∥ <i>ML</i>	1. Given
	2. ∠ <i>KJN</i> \cong ∠ <i>MLN</i> , ∠ <i>JKN</i> \cong ∠ <i>LMN</i>	2. Alt. Int. ∡ Thm.
	3. $\angle JNK \cong \angle LNM$	3. Vert. \land Thm.
	4. $\overline{JK} \cong \overline{ML}$	4. Given
	5. \overline{MK} bisects \overline{JL} , and \overline{JL} bisects \overline{MK} .	5. Given
	6. $\overline{JN} \cong \overline{LN}, \ \overline{MN} \cong \overline{KN}$	6. Def. of bisector
	7. $\triangle JKN \cong \triangle MLN$	7. Def. of \cong \triangle

THINK AND DISCUSS, PAGE 233

1. Measure all the sides and all the 🔬. The trusses are the same size if all the corr. sides and \measuredangle are \cong .



 $\angle R \cong \angle N$

EXERCISES, PAGES 234-237

 $\overline{PR} \cong \overline{LN}$

GUIDED PRATICE, PAGE 234

 You find the ▲ and sides that are in the same, or matching, places in the 2 ▲. 	2. ∠B
3. <i>LM</i>	4. <i>RT</i>
5. ∠ <i>M</i>	6. <i>NM</i>
7. ∠ <i>R</i>	8. ∠ <i>T</i>
9. $\overline{JK} \cong \overline{FG}$ JK = FG 3y - 15 = 12 3y = 27 y = 9 KL = y = 9	10. $\angle G \cong \angle K$ $m \angle G = m \angle K$ 4x - 20 = 108 4x = 128 x = 32

11.	Statements	Reasons
	1. AB ∥ CD	1. Given
	2. ∠ABE \cong ∠CDE, ∠BAE \cong ∠DCE	2. Alt. Int. ∠ Thm.
	3. $\overline{AB} \cong \overline{CD}$	3. Given
	4. <i>E</i> is the mdpt. of \overline{AC} and \overline{BD}	4. Given
	5. $\overline{AE} \cong \overline{CE}, \ \overline{BE} \cong \overline{DE}$	5. Def. of mdpt.
	6. ∠ <i>AEB</i> \cong ∠ <i>CED</i>	6. Vert. ∠ Thm
	7. $△$ <i>ABE</i> \cong $△$ <i>CDE</i>	7. Def. of \cong $\&$

PRACTICE AND PROBLEM SOLVING, PAGES 235-236

12.	Statements	Reasons
	1. $\angle UST \cong \angle RST$, $\angle U \cong \angle$	R 1. Given
	2. ∠ <i>STU</i> ≅ ∠ <i>STR</i>	2. Third \land Thm.
	3. $\overline{SU} \cong \overline{SR}$	3. Given
	4. $\overline{ST} \cong \overline{ST}$	4. Reflex. Prop. of ≅
	5. $\overline{TU} \cong \overline{TR}$	5. Given
	6. $\triangle RTS \cong \triangle UTS$	6. Def. of \cong \triangle
13.	LM 14.	CF
15.	∠N 16. .	∠D
17.	$\angle ADB \cong \angle CDB$ 18.	$\overline{AB} \cong \overline{CB}$
	$m \angle ADB = m \angle CDB$	AB = CB
	4x + 10 = 90 4x = 80	v - 7 = 12 v = 19
	4x = 80 x = 20	<i>y</i> = 19
	$m\angle C = x + 11 = 31^{\circ}$	
19.	Statements	Reasons
	1. $\angle N \cong \angle R$	1. Given
	2. <i>MP</i> bisects ∠ <i>NMR</i>	2. Given
	3. ∠ <i>NMP</i> \cong ∠ <i>RMP</i>	3. Def. of ∠ bisector
	4. ∠ <i>NPM</i> \cong ∠ <i>RPM</i>	4. Third \land Thm.
	5. P is the mdpt. of NR	5. Given
	6. $\overline{PN} \cong \overline{PR}$	6. Def. of mdpt.
	7. $\overline{MN} \cong \overline{MR}$	7. Given
	8. $\overline{MP} \cong \overline{MP}$	8. Reflex. Prop. of \cong
	9. $\triangle MNP \cong \triangle MRP$	9. Def. of \cong \triangle
20.	Statements	Reasons
	1. $\angle ADC$ and $\angle BCD$ are	1. Given
	rt. 🔬	
	2. ∠ADC \cong ∠BCD	2. Rt. ∠ \cong Thm.
	3. ∠DAC \cong ∠CBD	3. Given
	4. ∠ACD \cong ∠BDC	4. Third 🛦 Thm.

5. $\overline{AC} \cong \overline{BD}, \overline{AD} \cong \overline{BC}$

7. $\triangle ADC \cong \triangle BCD$

6. $\overline{DC} \cong \overline{DC}$

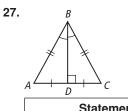
6. Reflex. Prop. of \cong

7. Def. of \cong \triangle

5. Given

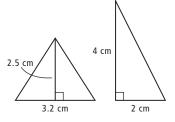
21. $\triangle GSR \cong \triangle KPH$, $\triangle SRG \cong \triangle PHK$ $\triangle RSG \cong \triangle HPK$,	22. <i>RVUTS</i> ≅ <i>VWXZY</i>
23. $\overline{AB} \cong \overline{DE}$ AB = DE 2x - 10 = x + 20 x = 30 AB = 2x - 10 = 2(30) - 10 = 50	24. $ \angle L \cong \angle P $ $ m \angle L = m \angle P $ $ x^{2} + 10 = 2x^{2} + 1 $ $ 9 = x^{2} $ $ m \angle L = x^{2} + 10 $ $ = 9 + 10 = 19^{\circ} $
25. $\overline{BC} \cong \overline{QR}$ BC = QR 6x + 5 = 5x + 7 x = 2 BC = 6x + 5 = 6(2) + 5 = 17	
26a. $\overline{KL} \cong \overline{ML}$ by the def. of	a square.

b.	Statements	Reasons
	1. JKLM is a square.	1. Given
	2. $\overline{KL} \cong \overline{ML}$	2. Def. of a square
	3. \overline{JL} and \overline{MK} are \perp bisectors of each other.	3. Given
	4. $\overline{MN} \cong \overline{KN}$	4. Def. of bisector
	5. $\overline{NL} \cong \overline{NL}$	5. Reflex. Prop. of ≅
	6. ∠ <i>MNL</i> and ∠ <i>KNL</i> are rt. <u></u> &.	6. Def. of ⊥
	7. ∠MNL \cong ∠KNL	7. Rt. ∠ \cong Thm.
	8. ∠ <i>NML</i> \cong ∠ <i>NKL</i>	8. Given
	9. ∠ <i>NLM</i> \cong ∠ <i>NLK</i>	9. Third \land Thm.
	10. $\triangle NML \cong \triangle NKL$	10. Def. of \cong \triangle



Statements	Reasons
1. $\overline{BD} \perp \overline{AC}$	1. Given
2. ∠ <i>ADB</i> and ∠ <i>CDB</i> are rt. ∡.	2. Def. of \perp
3. ∠ADB \cong ∠CDB	3. Rt. ∠ \cong Thm.
4. \overline{BD} bisects $\angle ABC$.	4. Given
5. $\angle ABD \cong \angle CBD$	5. Def. of bisector
6. $\angle A \cong \angle C$	6. Third ∡ Thm.
7. $\overline{AB} \cong \overline{CB}$	7. Given
8. $\overline{BD} \cong \overline{BD}$	8. Reflex. Prop. of \cong
9. <i>D</i> is the mdpt. of \overline{AC} .	9. Given
10. $\overline{AD} \cong \overline{CD}$	10. Def. of mdpt.
11. $△$ <i>ABD</i> \cong $△$ <i>CBD</i>	12. Def. of \cong \triangle

28. Possible answer:



- **29.** Solution A is incorrect. $\angle E \cong \angle M$, so $m \angle E = 46^{\circ}$.
- **30.** Yes; by the Third \measuredangle Thm., $\angle K \cong \angle W$, so all 6 pairs of corr. parts are \cong . Therefore, the \triangle are \cong .

TEST PREP, PAGE 236 **31.** B Matching up &, $\triangle ABC \cong \triangle FDE$. **32.** G $\angle N \cong \angle S$ $\angle \mathsf{M} \cong \angle R$ $m \angle M = m \angle R$ $m \angle N = m \angle S$ 58 = 3y - 262 = 2x + 854 = 2x60 = 3y*x* = 27 *y* = 20 33. D $\mathsf{m} \angle Y = 180 - (\mathsf{m} \angle X + \mathsf{m} \angle Z)$ $= 180 - (m \angle A + m \angle C)$ $= 180 - 60.9 = 119.1^{\circ}$ **34.** J P = MN + NR + RM= SP + QP + SR + RQ= 33 + 30 + 10 + 24 = 97

CHALLENGE AND EXTEND, PAGE 237
35.
$$P = TU + UV + VW + TW$$

 $149 = 6x + 7x + 3 + 9x - 8 + 8x - 11$
 $149 = 30x - 16$
 $165 = 30x$
 $x = 5.5$
Yes; $UV = WV = 41.5$, and $UT = WT = 33$.
 $TV = TV$ by the Reflex. Prop. of =. It is given that
 $\angle VWT \cong \angle VUT$ and $\angle WTV \cong \angle UTV$.
 $\angle WVT = \angle UVT$ by the Third \measuredangle Thm. Thus
 $\triangle TUV \cong \triangle TWV$ by the def. of $\cong \&$.

36. $\angle E \cong \angle A$ $m \angle E = m \angle A$ $v^2 - 10 = 90$ $y^2 = 100$ $m \angle D = m \angle H$ $=2y^{2}-132$ $= 2(100) - 132 = 68^{\circ}$

37.	Statements	Reasons
	1. $\overline{RS} \cong \overline{RT}$; $\angle S \cong \angle T$	1. Given
	2. $\overline{ST} \cong \overline{TS}$	2. Reflex. Prop. of \cong
	3. $\angle T \cong \angle S$	3. Sym. Prop. of \cong
	4. $\angle R \cong \angle R$	4. Reflex. Prop. of \cong
	5. $△RST \cong △RTS$	5. Def. of \cong $\&$

SPIRAL REVIEW, PAGE 237

38. $P(both even) = P(cube 1 even) \cdot P(cube 1 even)$ $=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$

39. P(sum is 5) = P(1, 4) + P(2, 3) + P(3, 2) + P(4, 1) $=\frac{4}{36}=\frac{1}{9}$

- 40. acute 41. rt.
- 42. obtuse

43. Step 1 Find x. 3x + 20 + 4x + x + 16 = 1808x + 36 = 180*x* = 18 Step 2 Find $m \angle Q$.

 $m \angle Q = 4x = 72^{\circ}$

44. $m \angle P = 3x + 20 = 74^{\circ}$

45. $m \angle QRS = m \angle P + m \angle Q$ $= 72 + 74 = 146^{\circ}$

MULTI-STEP TEST PREP, PAGE 238

1. AB = AD $\triangle ABD$ is isosc. \triangle ; $m \angle A = 90^{\circ}$ $\triangle ABD$ is rt. \triangle

2. m $\angle EBD = \frac{1}{2}$ m $\angle EBC$ $=\frac{1}{2}(90)=45^{\circ}$ $(\overline{DB} \text{ bisects rt. } \angle ABC.)$ $m \angle BDE = \frac{1}{2} m \angle ADB$ $=\frac{1}{2}\left(\frac{1}{2}\mathsf{m}\angle ADC\right)$ $=\frac{1}{2}\left(\frac{1}{2}(90)\right)=22.5^{\circ}$ $(\overline{DE} \text{ bisects } \angle \overline{ADB}, \text{ and } \overline{DB} \text{ bisects rt. } \angle ABC.)$ $m \angle BED = 180 - (m \angle EBD + m \angle BDE)$ $=180 - (45 + 22.5) = 112.5^{\circ}$ $(\triangle$ Sum Thm.)

3.	Statements	Reasons
	1. \overline{DB} bisects $\angle ABC$ and $\angle EDF$	1. Given
	2. ∠EBD \cong ∠FBD; ∠EDB \cong ∠FDB	 Def. of ∠ bisector
	3. ∠DEB \cong ∠DFB	3. Third 🖄 Thm.
	4. $\overline{BE} \cong \overline{BF}; \overline{DE} \cong \overline{DF}$	4. Given
	5. $\overline{DB} \cong \overline{DB}$	5. Reflex. Prop. of ≅
	6. $△$ <i>EBD</i> \cong $△$ <i>FDB</i>	6. Def. of \cong \triangle

READY TO GO ON? PAGE 239

- **1.** rt. \triangle . since $\angle ACB$ is rt. \angle
- **2.** equiangular, since $m \angle BAD = 30 + 30 = 60^{\circ}$ $= m \angle B = m \angle ADB$ **3.** obtuse, since $m \angle ADE = m \angle B + m \angle BAD = 120^{\circ}$ **4.** isosc., since PQ = QR = 5, PR = 8.7**5.** equilateral, since PR = RS = PS = 5**6.** scalene, since PQ = 8.7, QS = 5 + 5 = 10, PS = 57. $m \angle M + m \angle N = m \angle NLK$ 6y + 3 + 84 = 151 - 2y8y = 64y = 8 $m \angle M = 6y + 3 = 51^{\circ}$ 8. $m \angle C + m \angle D = m \angle ABC$ 90 + 5x = 20x - 15105 = 15xx = 7 $m \angle ABC = 20x - 15 = 125^{\circ}$ **9.** $m \angle RTP = m \angle R + m \angle T = 55 + 37 = 92^{\circ}$ 10. EF 11. JL **12.** ∠E 13. ZL
- **14.** $\overline{PR} \cong \overline{SU}$ **15.** $\angle S \cong \angle P$ PR = SU $m \angle S = m \angle P$ 14 = 3m + 22y = 4612 = 3mv = 23m = 4PQ = 2m + 1 = 9

10	01.1	D
16.	Statements	Reasons
	1. ĂB ∥ ĈD	1. Given
	2. ∠BAD \cong ∠CDA	2. Alt. Int. 🔬 Thm.
	3. $\overline{AC} \perp \overline{CD}, \overline{DB} \perp \overline{AB}$	3. Given.
	4. $\angle ACD$ and $\angle DBA$ are rt. \measuredangle	4. Def. of ⊥
	5. $\angle ACD \cong \angle DBA$	5. Rt. ∠ \cong Thm.
	6. ∠ <i>CAD</i> \cong ∠ <i>BDA</i>	6. Third \land Thm.
	7. $\overline{AB} \cong \overline{CD}, \ \overline{AC} \cong \overline{DB}$	7. Given
	8. $\overline{AD} \cong \overline{DA}$	8. Reflex. Prop. of ≅
	9. $\triangle ACD \cong \triangle DBA$	9. Def. of \cong \triangle

GEOMETRY LAB: EXPLORE SSS AND SAS TRIANGLE CONGRUENCE, PAGES 240-241

TRY THIS, PAGE 240–241

1. yes

- It is not possible. Once the lengths of the 3 straws are determined, only 1 △ can be formed.
- To prove that 2 ▲ are ≅, check to see if the 3 pairs of corr. sides are ≅.
- **4.** Three sides of 1 \triangle are \cong to 3 sides of the other \triangle .
- 5. yes
- No; once 2 side lengths and the included ∠ measure are determined, only 1 length is possible for the third remaining side.
- To prove that 2 ▲ are ≅, check to see if there are 2 pairs of ≅ corr. sides and that their included ▲ are ≅.
- 8. Check students' work.
- Two sides and the included ∠ of 1 △ are ≃ to 2 sides and the included ∠ of the other △.

4-4 TRIANGLE CONGRUENCE: SSS AND SAS, PAGES 242-249

CHECK IT OUT! PAGES 242-244

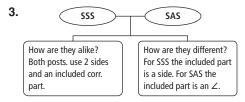
- **1.** It is given that $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$. By the Reflex. Prop. of \cong , $\overline{AC} \cong \overline{CA}$. So $\triangle ABC \cong \triangle CDA$ by SSS.
- **2.** It is given that $\overline{AB} \cong \overline{BD}$ and $\angle ABC \cong \angle DBC$. By Reflex. Prop. of \cong , $\overline{BC} \cong \overline{BC}$. So $\triangle ABC \cong \triangle DBC$ by SAS.

3. DA = 3t + 1 = 3(4) + 1 = 13 DC = 4t - 3 = 4(4) - 3 = 13 $m \angle ADB = 32^{\circ}$ $m \angle CDB = 2t^{2}$ $= 2(4)^{2} = 32^{\circ}$ $\overline{DA} \cong \overline{DC}, \overline{DB} \cong \overline{DB}, \text{ and } \angle ADB \cong \angle CDB$ So $\triangle ADB \cong \triangle CDB$ by SAS.

4.	Statements	Reasons
	1. $\overline{QR} \cong \overline{QS}$	1. Given
	2.	2. Given
	3. $\angle RQP \cong \angle SQP$	3. Def. of ∠ bisector
	4. $\overline{QP} \cong \overline{QP}$	4. Reflex. Prop. of \cong
	5. $\triangle RQP \cong \triangle SQP$	5. SAS Steps 1, 3, 4

THINK AND DISCUSS, PAGE 245

- 1. Show that all six pairs of corr. parts are \cong ; SSS; SAS
- The SSS and SAS Post. are methods for proving ▲
 ≅ without having to prove ≅ of all 6 corr. parts.



EXERCISES, PAGES 245–249 GUIDED PRACTICE, PAGES 245–246

1. ∠*T*

- **2.** It is given that $\overline{DA} \cong \overline{BC}$ and $\overline{AB} \cong \overline{CD}$. $\overline{BD} \cong \overline{DB}$ by the Reflex. Prop. of \cong . Thus $\triangle ABD \cong \triangle CBD$ by SSS.
- **3.** It is given that $\overline{MN} \cong \overline{MQ}$ and $\overline{NP} \cong \overline{QP}$. $\overline{MP} \cong \overline{MP}$ by the Relex. Prop. of \cong . Thus $\triangle MNP \cong \triangle MQP$ by SSS.
- **4.** It is given that $\overline{JG} \cong \overline{LG}$, and $\overline{GK} \cong \overline{GH}$. $\angle JGK \cong \angle LGH$ by the Vert. \measuredangle Thm. So $\triangle JGK \cong \triangle LGH$ by SAS.
- **5.** When x = 4, HI = GH = 3, and IJ = GJ = 5. $\overline{HJ} \cong \overline{HJ}$ by the Reflex. Prop. of \cong . Therefore, $\triangle GHJ \cong \triangle IHJ$ by SSS.
- **6.** When x = 18, RS = UT = 61, and $m \angle SRT = m \angle UTR = 36^{\circ}$. $\overline{RT} \cong \overline{TR}$ by the Reflex. Prop. of \cong . So $\triangle RST \cong \triangle TUR$ by SAS.

7.	Statements	Reasons
	1. $\overline{JK} \cong \overline{ML}$	1. Given
	2. ∠JKL \cong ∠MLK	2. Given
	3. $\overline{KL} \cong \overline{LK}$	3. Reflex. Prop. of \cong
	4. $\triangle JKL \cong \triangle MLK$	4. SAS Steps 1, 2, 3

PRACTICE AND PROBLEM SOLVING, PAGES 246-248

- 8. It is given that BC = ED = 4 in. and BD = EC = 3 in. So by the def. of \cong , $\overline{BC} \cong \overline{ED}$, and $\overline{BD} \cong \overline{EC}$. $\overline{DC} \cong \overline{CD}$ by the Reflex. Prop. of \cong . Thus $\triangle BCD \cong \triangle EDC$ by SSS.
- **9.** It is given that $\overline{KJ} \cong \overline{LJ}$ and $\overline{GK} \cong \overline{GL}$. $\overline{GJ} \cong \overline{GJ}$ by the Reflex. Prop. of \cong . So $\triangle GJK \cong \triangle GJL$ by SSS.
- **10.** It is given that $\angle C$ and $\angle B$ are rt. \measuredangle and $\overline{EC} \cong \overline{DB}$. $\angle C \cong \angle B$ by the Rt. $\angle \cong$ Thm. $\overline{CB} \cong \overline{BC}$ by the Reflex. Prop. of \cong . So $\triangle ECB \cong \triangle DBC$ by SAS.
- **11.** When y = 3, NQ = NM = 3, and QP = MP = 4. So by the def. of \cong , $\overline{NQ} \cong \overline{NM}$, and $\overline{QP} \cong \overline{MP}$. $m \angle M = m \angle Q = 90^{\circ}$, so $\angle M \cong \angle Q$ by the def. of \cong . Thus $\triangle MNP \cong \triangle QNP$ by SAS.
- **12.** When t = 5, YZ = 24, ST = 20, and SU = 22. So by the def. of \cong , $\overline{XY} \cong \overline{ST}$, $\overline{YZ} \cong \overline{TU}$, and $\overline{XZ} \cong \overline{SU}$. This $\triangle XYZ \cong \triangle STU$ by SSS.

13.	Statements	Reasons
	1. <i>B</i> is mdpt. of \overline{DC}	1. Given
	2. $\overline{DB} \cong \overline{CB}$	2. Def. of mdpt.
	3. $\overline{AB} \perp \overline{DC}$	3. Given
	4. ∠ <i>ABD</i> and ∠ <i>ABC</i> are rt.	4. Def. of ⊥
	5. ∠ABD \cong ∠ABC	5. Rt. ∠ \cong Thm.
	6. $\overline{AB} \cong \overline{AB}$	6. Reflex. Prop. of \cong
	7. $\triangle ABD \cong \triangle ABC$	7. SAS Steps 2, 5, 6

- **14.** SAS (with Reflex. Prop of \cong)
- 15. SAS (with Vert. & Thm.)
- 16. neither
- **18a.** To use SSS, you need to know that $\overline{AB} \cong \overline{DE}$ and $\overline{CB} \cong \overline{CE}$.
 - **b.** To use SAS, you need to know that $\overline{CB} \cong \overline{CE}$.

17. neither

19.
$$QS = \sqrt{1^2 + 2^2} = \sqrt{5}$$

 $SR = \sqrt{4^2 + 0^2} = 4$
 $QR = \sqrt{3^2 + 2^2} = \sqrt{13}$
 $TV = \sqrt{1^2 + 2^2} = \sqrt{5}$
 $VU = \sqrt{4^2 + 0^2} = 4$
 $TU = \sqrt{3^2 + 2^2} = \sqrt{13}$
The \triangle are \cong by SSS.
20. $AB = \sqrt{1^2 + 4^2} = \sqrt{17}$
 $BC = \sqrt{4^2 + 3^2} = 5$
 $AC = \sqrt{5^2 + 1^2} = \sqrt{26}$
 $DE = \sqrt{1^2 + 4^2} = \sqrt{17}$
 $EF = \sqrt{4^2 + 3^2} = 5$
 $DF = \sqrt{4^2 + 0^2} = 4$
The \triangle are not \cong .

21.	Statements	Reasons
	1. $\angle ZVY \cong \angle WYV$, $\angle ZVW \cong \angle WYZ$	1. Given
	2. $m \angle ZVY = m \angle WYV$, $m \angle ZVW = m \angle WYZ$	2. Def. of \cong
	3. $m \angle ZVY + m \angle ZVW$ = $m \angle WYV + m \angle WYZ$	3. Add. Prop. of =
	4. m $\angle WVY = m \angle ZYV$	4. ∠ Add. Post.
	5. $\angle WVY \cong \angle ZYV$	5. Def. of ≅
	6. $\overline{WV} \cong \overline{YZ}$	6. Given
	7. $\overline{VY} \cong \overline{YV}$	7. Reflex. Prop. of \cong
	8. $\triangle ZVY \cong \triangle WYV$	8. SAS Steps 6, 5, 7

- **22a.** Measure \overline{AB} and \overline{AC} on 1 truss and measure \overline{DE} and \overline{DF} on the other. If $\overline{AB} \cong \overline{DE}$ and $\overline{AC} \cong \overline{DF}$, then the trusses are \cong by SAS.
 - **b.** 3.5 ft; by the Pyth. Thm., BC \approx 3.5 ft. Since the \triangle are congruent, $\overline{EF} \cong \overline{BC}$.

- 24. AB = AC 4x = 6x - 11 11 = 2x x = 5.5By the def. of \cong , $AB \cong BD$, and $BC \cong DC$. $AC \cong AC$
 - by the Reflex. Prop. of \cong . Thus $\triangle ABC \cong \triangle ADC$ by SSS.
- 25. Measure the lengths of the logs. If the lengths of the logs in 1 wing deflector match the lengths of the logs in the other wing deflector, the swill be by SAS or SSS.
- 26. Yes; if the ▲ have the same 2 side lengths and the same included ∠ measure, the ▲ are ≅ by SAS.
- 27. Check students' constructions; yes; if each side is \cong to the corr. side of the second \triangle , they can be in any order.

TEST PREP, PAGE 248

28. C

In I and III, two sides are congruent with an congruent angle in between so I and III are similar by SAS.

29. G

SAS proves $\triangle ABC \cong \triangle ADC$, so AB + BC + CD + DA = AB + CD + CD + AB

$$BC + CD + DA = AB + CD + CD + AB$$
$$= 12.1 + 7.8 + 7.8 + 12.1$$
$$= 39.8 \text{ cm}$$

30. A

 $\angle F$ and $\angle J$ are the included \measuredangle , so $\angle F \cong \angle J$ proves SAS.

31. J

$$\overline{EF} \cong \overline{EH}$$
$$EF = EH$$
$$4x + 7 = 6x - 4$$
$$11 = 2x$$
$$x = 5.5$$

CHALLENGE AND EXTEND, PAGE 249

32.	Statements	Reasons
	1. Draw <i>DB</i> .	1. Through any 2 pts. there is exactly one line.
	2. $\angle ADC$ and $\angle BCD$ are supp.	2. Given
	3. AD CB	3. Conv. of Same-Side Int.
	4. ∠ADB \cong ∠CBD	4. Alt. Int. 🛦 Thm.
	5. $\overline{AD} \cong \overline{CB}$	5. Given
	6. $\overline{DB} \cong \overline{BD}$	6. Reflex Prop. of \cong
	7. $\triangle ADB \cong \triangle CBD$	7. SAS Steps 5, 4, 6
33	Statements	Reasons
33.	Statements	Reasons

33.	Statements	Reasons
	1. ∠QPS \cong ∠TPR	1. Given
	2. ∠ <i>RPS</i> \cong ∠ <i>RPS</i>	2. Reflex. Prop. of \cong
	3. $\angle QPR \cong \angle TPS$	3. Subst. Prop. of \cong
	4. $\overline{PQ} \cong \overline{PT}, \ \overline{PR} \cong \overline{PS}$	4. Given
	5. $\triangle PQR \cong \triangle PTS$	5. SAS Steps 3, 4

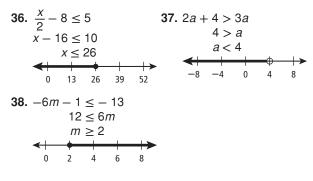
34.
$$m \angle FKJ + m \angle KFJ + m \angle FJK = 180$$

 $2x + 3x + 10 + 90 = 180$
 $5x = 80$
 $x = 16$
 $KJ = HJ = 72$, so $\overline{KJ} \cong \overline{HJ}$ by the def. of \cong .

 $\angle FJK \cong \angle FJH$ by the Rt. $\angle \cong$ Thm. $\overline{FJ} \cong \overline{FJ}$ by the Reflex. Prop. of \cong . So $\triangle FJK \cong \triangle FJH$ by SAS.

35. $m \angle KFJ = m \angle HFJ$ 2x + 6 = 3x - 21 27 = x FK = FH = 171, so $\overline{FK} \cong \overline{FH}$ by the def. of \cong . $\angle KFJ \cong \angle HFJ$ by the def. of \angle bisector. $\overline{FJ} \cong \overline{FJ}$ by the Reflex. Prop. of \cong . So $\triangle FJK \cong \triangle FJH$ by SAS.

SPIRAL REVIEW, PAGE 249



39.
$$4x - 7 = 21$$
 Given
 $4x - 7 + 7 = 21 + 7$ Add. Prop. of =
 $4x = 28$ Simplify.
 $\frac{4x}{4} = \frac{28}{4}$ Div. Prop. of =
 $x = 7$ Simplify.
40. $\frac{a}{4} + 5 = -8$ Given
 $\frac{a}{4} + 5 - 5 = -8 - 5$ Subtr. Prop. of =
 $\frac{a}{4} = -13$ Simplify.
 $4\left(\frac{a}{4}\right) = 4(-13)$ Multi. Prop. of =
 $a = -52$ Simplify.
41. $6r = 4r + 10$ Given
 $6r - 4r = 4r - 4r + 10$ Subtr. Prop. of =
 $2r = 10$ Simplify.
 $\frac{2r}{2} = \frac{10}{2}$ Div. Prop. of =
 $r = 5$ Simplify.
42. $\angle H \cong \angle F$
 $m \angle H = m \angle F$
 $x + 24 = 110$
 $x = 86$
43. $m \angle FGE = m \angle GEH = 36$
 $m \angle FEG + m \angle F + m \angle FGE = 180$
 $m \angle FEG = 180 - 146 = 34^{\circ}$
44. $m \angle FGH = m \angle FGE + m \angle EGH$
 $= m \angle GEH + m \angle FEG$

USING TECHNOLOGY, PAGE 249

 $= 36 + 34 = 70^{\circ}$

- 1. Check students' drawings.
- 2. They stay the same size and shape.
- **3.** $\triangle ABC \cong \triangle DEF$
- 4. Check students' measurements.

TECHNOLOGY LAB: PREDICT OTHER TRIANGLE CONGRUNECE RELATIONSHIPS, PAGES 250-251

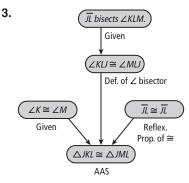
TRY THIS, PAGE 250-251

- **1.** Yes; the \triangle stays the same shape and size if you do not change *AD*, m $\angle A$, or m $\angle D$.
- **2.** no **3.** Third <u>▲</u> Thm.
- No; the ∠ measures must stay the same but the side lengths can change.
- 5. Check students' constructions; yes; yes, AAS.
- You need 1 side length of the △. If 2 ∠ pairs and 1 (non-included) side pair are ≅ (AAS), the ▲ are ≅.
- 7. many; no 8. 1
- 9. rt. 10. rt. 🖄

4-5 TRIANGLE CONGRUENCE: ASA, AAS, AND HL, PAGES 252–259

CHECK IT OUT! PAGES 253-255

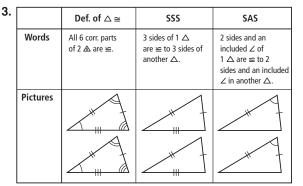
- **1.** Yes; the \triangle is uniquely determined by AAS.
- **2.** By the Alt. Int. \measuredangle Thm., $\angle KLN \cong \angle MNL$. $\overline{LN} \cong \overline{NL}$ by the Reflex. Prop. of \cong . No other congruence relationships can be determined, so ASA cannot be applied.

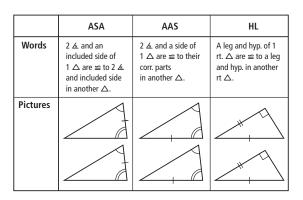


4. Yes; it is given that $\overline{AC} \cong \overline{DB}$. $\overline{CB} \cong \overline{BC}$ by the Reflex. Prop. of \cong . Since $\angle ABC$ and $\angle DCB$ are rt. $\underline{\&}$, $\triangle ABC \cong \triangle DCB$ by HL.

THINK AND DISCUSS, PAGE 255

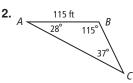
- **1.** No; the \cong sides are not corr. sides.
- 2. Possible answer: corr. & and sides





EXERCISES, PAGES 256–259 GUIDED PRACTICE, PAGE 256

1. The included side \overline{BC} is enclosed between $\angle ABC$ and $\angle ACB$.

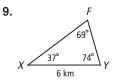


- **3.** Yes; the \triangle is determined by AAS.
- **4.** Yes; by the Def. of \angle bisector, $\angle TSV \cong \angle RSV$ and $\angle TVS \cong \angle RVS$. $\overline{SV} \cong \overline{SV}$ by the Reflex. Prop. of \cong . So $\triangle VRS \cong \triangle VTS$ by ASA.
- No; you need to know that a pair of corr. sides are ≅.

6a. $\overline{QS} \cong \overline{SQ}$ **b.** $\angle RQS \cong \angle PSQ$

- **c.** Rt. $\angle \cong$ Thm. **d.** AAS
- 7. Yes; it is given that $\angle D$ and $\angle B$ are rt. \measuredangle and $\overline{AD} \cong \overline{BC}$. $\triangle ABC$ and $\triangle CDA$ are rt. \measuredangle by def. $\overline{AC} \cong \overline{CA}$ by the Reflex. Prop. of \cong . So $\triangle ABC \cong \triangle CDA$ by HL.
- **8.** No; you need to know that $\overline{VX} \cong \overline{VZ}$.

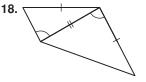
PRACTICE AND PROBLEM SOLVING, PAGE 257-258



- **10.** Yes; the \triangle is uniquely determined by ASA.
- **11.** No; you need to know that $\angle MKJ \cong \angle MKL$.
- **12.** Yes; by the Alt. Int. \measuredangle Thm., $\angle SRT \cong \angle UTR$, and $\angle STR \cong \angle URT$. $\overline{RT} \cong \overline{TR}$ by the Reflex. Prop. of \cong . So $\triangle RST \cong \triangle TUR$ by ASA.

13a. ∠ <i>A</i> ≅ ∠ <i>D</i>	b. Given
c. $\angle C \cong \angle F$	d. AAS

- **14.** No; you need to know that $\angle K$ and $\angle H$ are rt. \measuredangle .
- **15.** Yes; *E* is a mdpt. So by def., $\overline{BE} \cong \overline{CE}$, and $\overline{AE} \cong \overline{DE}$. $\angle A$ and $\angle D$ are \cong by the Rt. $\angle \cong$ Thm. By def., $\triangle ABE$ and $\triangle DCE$ are rt. \triangle . So $\triangle ABE \cong \triangle DCE$ by HL.
- **16.** AAS proves $\triangle ADB \cong \triangle CDB$; reflection
- **17.** $\triangle FEG \cong \triangle QSR$; rotation



- **19a.** No; there is not enough information given to use any of the congruence theorems.
 - **b.** HL can be used, since also $\overline{JL} \cong \overline{JL}$.

Holt Geometry

20. Proof B is incorrect. The corr. sides are not in the correct order.

It is given that $\triangle ABC$ and $\triangle DEF$ are rt. \triangle . $\overline{AC} \cong \overline{DF}$, $\overline{BC} \cong \overline{EF}$, and $\angle C$ and $\angle F$ are rt. \measuredangle . $\angle C \cong \angle F$ by the Rt. $\angle \cong$ Thm. Thus $\triangle ABC \cong \triangle DEF$ by SAS.

22.	Statements	Reasons
	1. <i>AD</i> ∥ <i>BC</i>	1. Given
	2. $\angle DAE \cong \angle BCE$	2. Alt. Int. 🛦 Thm.
	3. $\angle AED \cong \angle CEB$	3. Vert. 🛦 Thm.
	4. $\overline{AD} \cong \overline{CB}$	4. Given
	5. $\triangle AED \cong \triangle CEB$	5. AAS Steps 2, 3, 4

23.	Statements	Reasons
	1. $\overline{KM} \perp \overline{JL}$	1. Given
	2. $\angle JKM$ and $\angle LKM$ are rt. $\&$	2. Def. of ⊥
	3. $\angle JKM \cong \angle LKM$	3. Rt. ∠ \cong Thm.
	4. $\overline{JM} \cong \overline{LM}$, $\angle JMK \cong \angle LMK$	4. Given
	5. $\triangle JKM \cong \triangle LKM$	5. AAS Steps 3, 4

- **24.** Since 2 sides and the included \angle are equal in measure and therefore \cong , you could prove the $\& \cong$ using SAS. You could also use HL since the ${\ensuremath{\vartriangle}}$ are rt. 🗟.
- 25. Check students' constructions.

TEST PREP. PAGES 258-259

26. A

Need $\angle XVZ \cong \angle XWY$ for ASA.

27. J

From figure, 2 corr. side pairs and included ∠ pair are \cong , i.e., SAS.

28. C

Alt. Int. \checkmark Thm. gives two $\cong \angle$ pairs, and one nonincluded \cong side pair is given. AAS proves $\triangle AED \cong \triangle CEB.$

29. G

For AAS, need $\overline{RT} \cong \overline{UW}$. So: RT = UW6y - 2 = 2y + 74y = 9y = 2.25

30. No; check students' drawings and constructions; since the lengths of the corr. sides of the 2 & are not equal, the 2 \triangle are not \cong even if the corr. \measuredangle have the same measure.

CHALLENGE AND EXTEND, PAGE 259

31. Yes; the sum of the \angle measures in each \triangle must be 180°, which makes it possible to solve for x and y. The value of x is 15, and the value of y is 12. Each \triangle has \measuredangle measuring 82°, 68°, and 30°. $\overline{VU} \cong \overline{VU}$ by the Reflex. Prop. of \cong . So $\triangle VSU \cong \triangle VTU$ by ASA or AAS.

32.	Statements	Reasons
	1. $\triangle ABC$ is equil.	1. Given
	2. $\overline{AC} \cong \overline{BC}$	2. Def. of equil. △
	3. C is mdpt. of DE.	3. Given
	4. $\overline{DC} \cong \overline{EC}$	4. Def. of mdpt.
	5. $\angle DAC$ and $\angle EBC$ are \cong . and supp.	5. Given
	6. $\angle DAC$ and $\angle EBC$ are rt. \measuredangle .	6. ≰ that are ≅ and supp. are rt. ≰.
	7. $\triangle DAC$ and $\triangle EBC$ are rt. \triangle .	7. Def. of rt. \triangle
	8. $\triangle DAC \cong \triangle EBC$	8. HL Steps 4, 2

c E F

Case 1: Given rt. $\triangle ABC$ and rt. $\triangle DEF$ with $\angle A \cong \angle D$ and $AB \cong DE$

Statements	Reasons
1. ∠ $A \cong ∠D$	1. Given
2. $\overline{AB} \cong \overline{DE}$	2. Given
3. ∠B \cong ∠E	3. Rt. ∠ \cong Thm.
4. $\triangle ABC \cong \triangle DEF$	4. ASA Steps 1, 2, 3

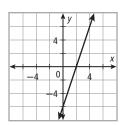
Case 2; given rt. $\triangle ABC$ and rt. $\triangle DEF$ with $\angle A \cong \angle D$ and $\overline{BC} \cong \overline{EF}$

Statements	Reasons
1. $\angle A \cong \angle D$	1. Given
2. $\overline{BC} \cong \overline{EF}$	2. Given
3. ∠ <i>B</i> ≅ ∠ <i>E</i>	3. Rt. ∠ \cong Thm.
4. $\triangle ABC \cong \triangle DEF$	4. ASA Steps 1, 3, 2

34. Third \measuredangle Thm.; if the third \angle pair is \cong , then the \oiint are also \cong by AAS.

SPIRAL REVIEW, PAGE 259

35. x-intercept:	y-intercept:
0 = 3x - 6	y = 3(0) - 6
6 = 3x	y = -6
<i>x</i> = 2	



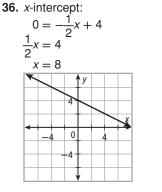
y-intercept:

y-intercept:

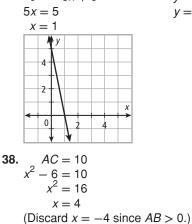
y = 5

y = -5(0) + 5

 $y = -\frac{1}{2}(0) + 4$ y = 4



37. *x*-intercept: 0 = -5x + 5



$$AB = x + 2 = 4 + 2 = 6$$

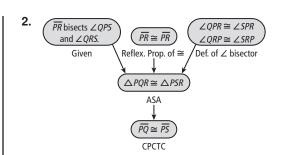
$$BC = x^{2} - 2x = 4^{2} - 2(4) = 8$$

39. m\angle A + m\angle B + m\angle C = 180
53.1 + 90 + m\angle C = 180
143.1 + m\angle C = 180
m\angle C = 36.9^{\circ}

4-6 TRIANGLE CONGRUENCE: CPCTC, PAGES 260-265

CHECK IT OUT! PAGES 260-261

1. JL = NL and KL = ML, so $\overline{JL} \cong \overline{NL}$ and $\overline{KL} \cong \overline{ML}$. By Vert. & Thm., $\angle MLN \cong \angle KLJ$. By SAS, $\triangle MLN \cong \triangle KLJ$. By CPCTC, JK = NM = 41 ft



3.	Statements	Reasons
	1. J is mdpt. of \overline{KM} and \overline{NL} .	1. Given
	2. $\overline{KJ} \cong \overline{MJ}$ and $\overline{LJ} \cong \overline{NJ}$	2. Def. of mdpt.
	3. $\angle KJL \cong \angle MJN$	3. Vert. 🛦 Thm.
	4. $\triangle KJL \cong \triangle MJN$	4. SAS Steps 2, 3
	5. $\angle LKJ \cong \angle NMJ$ or $\angle JLK$ $\cong \angle JNM$	5. CPCTC
	6. <i>KL</i> <i>MN</i>	6. Conv. of Alt. Int.

4. Use Distance Formula to find side lengths.

$$JK = \sqrt{(2 - (-1))^2 + ((-1) - (-2))^2}$$

= $\sqrt{9 + 1} = \sqrt{10}$
$$KL = \sqrt{((-2) - 2)^2 + (0 - (-1))^2}$$

= $\sqrt{16 + 1} = \sqrt{17}$
$$JL = \sqrt{((-2) - (-1))^2 + (0 - (-2))^2}$$

= $\sqrt{1 + 4} = \sqrt{5}$
$$RS = \sqrt{(5 - 2)^2 + (2 - 3)^2}$$

= $\sqrt{9 + 1} = \sqrt{10}$
$$ST = \sqrt{(1 - 5)^2 + (1 - 2)^2}$$

= $\sqrt{16 + 1} = \sqrt{17}$
$$RT = \sqrt{(1 - 2)^2 + (1 - 3)^2}$$

= $\sqrt{1 + 4} = \sqrt{5}$
So $\overline{IK} \approx \overline{RS} \ \overline{KI} \approx \overline{ST}$ and $\overline{II} \approx \overline{RT}$ Then

So $JK \cong HS$, $KL \cong ST$, and $JL \cong R\overline{T}$. Therefore, $\triangle JKL \cong \triangle RST$ by *SSS*, and $\angle JKL \cong \angle RST$ by CPCTC.

THINK AND DISCUSS PAGE 262

1. SAS; $\overline{UW} \cong \overline{XZ}$; $\angle U \cong \angle X$; $\angle W \cong \angle Z$

2.
$$\triangle ABC \cong \triangle DEF$$

CPCTC		
$\angle A \cong \angle D$	$\overline{AB} \cong \overline{DE}$	
$\angle B \cong \angle E$ $\angle C \cong \angle F$	$\overrightarrow{BC} \cong \overrightarrow{EF}$ $\overrightarrow{AC} \cong \overrightarrow{DF}$	

EXERCISES, PAGES 262-265

GUIDED PRACTICE, PAGE 262-263

- **1.** Corr. \measuredangle and corr. sides
- **2.** $\angle BCA \cong \angle DCE$ by Vert. \measuredangle Thm, $\angle CBA \cong \angle CDE$ by Rt. $\angle \cong$ Thm., and $\overline{BC} \cong \overline{DC}$ (given). Therefore $\triangle ABC \cong \triangle EDC$ by ASA. By CPCTC, $\overline{AB} \cong \overline{DE}$, so AB = DE = 6.3 m.
- **3a.** Def. of \perp **b.** Rt. $\angle \cong$ Thm.
- **c.** Reflex. Prop. of \cong **d.** Def. of mdpt.
- e. $\triangle RXS \cong \triangle RXT$ f. CPCTC

4.	Statements	Reasons
	1. $\overline{AC} \cong \overline{AD}, \ \overline{CB} \cong \overline{DB}$	1. Given
	2. $\overline{AB} \cong \overline{AB}$	2. Reflex. Prop. of \cong
	3. $△ACB \cong △ADB$	3. SSS Steps 1, 2
	4. ∠ <i>CAB</i> \cong ∠ <i>DAB</i>	4. CPCTC
	5. <i>AB</i> bisects ∠ <i>CAD</i> .	5. Def. of ∠ bisector

5. Use Distance Formula to find side lengths.

$$EF = \sqrt{((-1) - (-3))^2 + (3 - 3)^2}$$

= $\sqrt{4 + 0} = 2$
$$FG = \sqrt{((-2) - (-3))^2 + (0 - 3)^2}$$

= $\sqrt{1 + 9} = \sqrt{10}$
$$EG = \sqrt{((-2) - (-1))^2 + (0 - 3)^2}$$

= $\sqrt{1 + 9} = \sqrt{10}$
$$JK = \sqrt{(0 - 2)^2 + ((-1) - (-1))^2}$$

= $\sqrt{4 + 0} = 2$
$$KL = \sqrt{(1 - 2)^2 + (2 - (-1))^2}$$

= $\sqrt{1 + 9} = \sqrt{10}$
$$JL = \sqrt{(1 - 0)^2 + (2 - (-1))^2}$$

= $\sqrt{1 + 9} = \sqrt{10}$

So $\overline{EF} \cong \overline{JK}$, $\overline{FG} \cong \overline{KL}$, and $\overline{EG} \cong \overline{JL}$. Therefore $\triangle EFG \cong \triangle JKL$ by SSS, and $\angle EFG \cong \angle JKL$ by CPCTC.

6. Use Distance Formula to find side lengths.

$$AB = \sqrt{(4-2)^{2} + (1-3)^{2}}$$

= $\sqrt{4+4} = 2\sqrt{2}$
$$BC = \sqrt{(1-4)^{2} + ((-1)-1)^{2}}$$

= $\sqrt{9+4} = \sqrt{13}$
$$AC = \sqrt{(1-2)^{2} + ((-1)-3)^{2}}$$

= $\sqrt{1+16} = \sqrt{17}$
$$RS = \sqrt{((-3) - (-1))^{2} + ((-2) - 0)^{2}}$$

= $\sqrt{4+4} = 2\sqrt{2}$
$$ST = \sqrt{(0 - (-3))^{2} + ((-4) - (-2))^{2}}$$

= $\sqrt{9+4} = \sqrt{13}$
$$RT = \sqrt{(0 - (-1))^{2} + ((-4) - 0)^{2}}$$

= $\sqrt{1+16} = \sqrt{17}$
So $\overline{AB} \cong \overline{RS}, \overline{BC} \cong \overline{ST}$, and $\overline{AC} \cong \overline{RT}$. There

So $\overline{AB} \cong \overline{RS}$, $\overline{BC} \cong \overline{ST}$, and $\overline{AC} \cong \overline{RT}$. Therefore $\triangle ABC \cong \triangle RST$ by SSS, and $\angle ACB \cong \angle RTS$ by CPCTC.

PRACTICE AND PROBLEM SOLVING, PAGES 263–264

7. ∠*ABC* ≅ ∠*EDC* by Rt. ∠ ≅ Thm., ∠*ACB* ≅ ∠*ECD* by *Vert.* \measuredangle Thm., and $\overline{BC} \cong \overline{DC}$. So $\triangle ABC \cong \triangle EDC$ by ASA. By CPCTC, AB = DE = 420 ft.

8.	Statements	Reasons
	1. <i>M</i> is mdpt. of \overline{PQ} and \overline{RS} .	1. Given
	2. $\overline{PM} \cong \overline{QM}, \ \overline{RM} \cong \overline{SM}$	2. Def. of mdpt.
	3. $\angle PMS \cong \angle QMR$	3. Vert. 🛦 Thm.
	4. $\triangle PMS \cong \triangle QMR$	4. SAS Steps 2, 3
	5. $\overline{QR} \cong \overline{PS}$	5. CPCTC

9.	Statements	Reasons
	1. $\overline{WX} \cong \overline{XY} \cong \overline{YZ} \cong \overline{ZW}$	1. Given
	2. $\overline{ZX} \cong \overline{XZ}$	2. Reflex. Prop. of \cong
	3. $\triangle WXZ \cong \triangle YZX$	3. SSS, steps 1, 2
	4. $\angle W \cong \angle Y$	4. CPCTC

10.	Statements	Reasons
	1. G is mdpt. of FH.	1. Given
	2. <i>FG</i> = <i>HG</i>	2. Def. of mdpt.
	3. $\overline{FG} \cong \overline{HG}$	3. Def. of ≅.
	4. Draw <i>EG</i> .	4. Exactly 1 line through any 2 pts.
	5. $\overline{EG} \cong \overline{EG}$	5. Reflex. Prop. of \cong
	6. $\overline{EF} \cong \overline{EH}$	6. Given
	7. $△$ EGF \cong $△$ EGH	7. SSS Steps 3, 5, 6
	8. $\angle EFG \cong \angle EHG$	8. CPCTC
	9. ∠1 ≅ ∠ 2	9. \cong Supp. Thm.

11.StatementsReasons1.
$$\overline{LM}$$
 bisects $\angle JLK$.1. Given2. $\angle JLM \cong \angle KLM$ 3. $\overline{U} \cong \overline{KL}$ 4. $\overline{LM} \cong \overline{LM}$ 4. Reflex. Prop. of \cong 5. $\triangle JLM \cong \triangle KLM$ 5. SAS Steps 3, 2, 46. $\overline{JM} \cong \overline{KM}$ 6. CPCTC7. M is mdpt. of \overline{JK} .7. Def. of mdpt.12. $RS = \sqrt{(2-0)^2 + (4-0)^2}$ $= \sqrt{4+16} = 2\sqrt{5}$ $ST = \sqrt{((-1) - 2)^2 + (4-3)^2}$ $= \sqrt{9+1} = \sqrt{10}$ $RT = \sqrt{((-1) - 0)^2 + (3-0)^2}$ $= \sqrt{1+9} = \sqrt{10}$ $UV = \sqrt{((-3) - (-1))^2 + ((-4) - 0)^2}$ $= \sqrt{4+16} = 2\sqrt{5}$ $VW = \sqrt{((-4) - (-3))^2 + ((-1) - (-4))^2}$ $= \sqrt{1+9} = \sqrt{10}$ $UV = \sqrt{((-4) - (-1))^2 + ((-1) - 0)^2}$ $= \sqrt{9+1} = \sqrt{10}$ $UW = \sqrt{((-4) - (-1))^2 + ((-1) - 0)^2}$ $= \sqrt{9+1} = \sqrt{10}$ $UW = \sqrt{((-4) - (-1))^2 + ((-1) - 0)^2}$ $= \sqrt{9+1} = \sqrt{10}$ $UW = \sqrt{((-4) - (-1))^2 + ((-2) - 3)^2}$ $= \sqrt{9+1} = \sqrt{10}$ $UW = \sqrt{((-1) - (-1))^2 + ((-2) - 3)^2}$ $= \sqrt{9 + 4} = \sqrt{13}$ $BC = \sqrt{(2 - (-1))^2 + ((-2) - 3)^2}$ $= \sqrt{9 + 4} = \sqrt{13}$ $BC = \sqrt{(2 - (-1))^2 + ((-2) - 3)^2}$ $= \sqrt{9 + 4} = \sqrt{13}$ $EF = \sqrt{((-1) - (-1))^2 + ((-2) - 1)^2}$ $= \sqrt{9 + 4} = \sqrt{13}$ $EF = \sqrt{((-1) - (-1))^2 + (0 - (-5))^2}$ $= \sqrt{9 + 4} = \sqrt{13}$ $EF = \sqrt{((-1) - (-1))^2 + (0 - (-5))^2}$ $= \sqrt{9 + 9} = 3\sqrt{2}$ $O AB \cong DE, BC \cong EF$, and $CA \cong DF$. Therefore, $\triangle AB \subseteq \Delta DEF$ by SSS, and $\angle BAC \cong \angle EDF$ by $CPCTC$.1. Given14.Statements $I \triangle QRS$ is adj. to $\triangle QTS$. $I \triangle QRS \cong ZTQS$ $S \adj \equiv DZ$ $O AB \cong D$

15.	Statements	Reasons
	1. <i>E</i> is the mdpt. of \overline{AC} and \overline{BD} .	1. Given
	2. $\overline{AE} \cong \overline{CE}, \ \overline{BE} \cong \overline{DE}$	2. Def. of mdpt.
	3. ∠AEB \cong ∠CED	3. Vert \land Thm.
	4. $\triangle AEB \cong \triangle CED$	4. SAS Steps 2, 3
	5. $\angle A \cong \angle C$	5. CPCTC
	6. AB CD	6. Conv. of Alt. Int. 🖄 Thm.

16a.	$\angle ADB$, $\angle ADC$ are rt. \measuredangle , hyp. lengths are =, corr.
	eg lengths are =. So HL proves $\triangle ADB \cong \triangle ADC$.

b.	Statements	Reasons
	1. $\overline{AD} \perp \overline{BC}$	1. Given
	2. ∠ ADB and ∠ADC are rt. $▲$.	2. Def. of ⊥
	3. $\triangle ADB$ and $\triangle ADC$ are rt. \triangle	3. Def. of rt. \triangle
	4. $AB = AC = 20$ in.	4. Given
	5. $\overline{AB} \cong \overline{AC}$	5. Def. of ≅
	6. $\overline{AD} \cong \overline{AD}$	6. Reflex. Prop. of \cong
	7. $△ADB \cong △ADC$	7. HL Steps 5, 6
	8. $\overline{BD} \cong \overline{CD}$	8. CPCTC

c.
$$BD^2 + AD^2 = AB^2$$

 $BD^2 + 10^2 = 20^2$
 $BD = \sqrt{400 - 100}$
 $\approx 17.3 \text{ in.}$
 $BC = 2BD \approx 34.6 \text{ in.}$

17.
$$\triangle$$
 are \cong by SAS.
 18. \triangle are \cong by $Ax + 11 = 2x - 3$
 $x + 11 = 2x - 3$
 $4x + 1 = 6$
 $14 = x$
 $42 = 2$

are
$$\cong$$
 by ASA.
+ 1 = 6x - 41
42 = 2x
x = 21

19.	Statements	Reasons
	1. $PS = RQ$	1. Given
	2. $\overline{PS} \cong \overline{RQ}$	2. Def. of $≅$
	3. m∠1 = m∠4	3. Given
	4. ∠1 ≅ ∠4	4. Def. of ≅
	5. $\overline{SQ} \cong \overline{QS}$	5. Reflex. Prop. of \cong
	6. $\triangle PSQ \cong \triangle RQS$	6. SAS Steps 2, 4, 5
	7. ∠3 ≅ ∠2	7. CPCTC
	8. m∠3 = m∠2	8. Def. of ≅

6. \overline{QS} bisects \overline{RT} .

4. $\triangle RSQ \cong \triangle TSQ$

5. $\overline{RS} \cong \overline{TS}$

4. AAS Steps 1, 2, 3

6. Def. of bisector

5. CPCTC

20. **Statements** Reasons 1. $m \angle 1 = m \angle 2$, 1. Given $m \angle 3 = m \angle 4$ 2. $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$ 2. Def. of \cong 3. $\overline{SQ} \cong \overline{SQ}$ 3. Reflex. Prop. of \cong 4. $\triangle PSQ \cong \triangle RSQ$ 4. ASA Steps 2, 3 5. $\overline{PS} \cong \overline{RS}$ 5. CPCTC 6. PS = RS6. Def. of ≅ 21. Statements Reasons 1. PS = RQ, PQ = RS1. Given $2 \overline{PS} \sim \overline{PO} \overline{PO} \sim \overline{PS}$ 2 Dof of a

2. $PS \cong RQ, PQ \cong RS$	 Def. of ≅
3. $\overline{SQ} \cong \overline{QS}$	3. Reflex. Prop. of \cong
4. $\triangle PSQ \cong \triangle RQS$	4. SSS Steps 2, 3
5. ∠3 ≅ ∠2	5. CPCTC
6. <i>PQ</i> ∥ <i>RS</i>	6. Conv. of Alt. Int. 🖄 Thm.

23.

The segs. \overline{CA} , \overline{CD} , and \overline{CB} must be \cong . $\angle ACB \cong \angle DCB$. If $\triangle ACB \cong \triangle DCB$ by SAS, then AB = DB.

TEST PREP, PAGES 264-265

24. C

Only way to get a second \angle pair \cong is first to prove \triangle are \cong and then to use CPCTC. But you would use CPCTC to prove $\overline{AC} \cong \overline{AD}$ directly.

25. G

 $LNK \cong NLM$, so by CPCTC $\angle LNK \cong \angle NLM$.

26. C

.	
$6x = x + \frac{5}{2}$	10x + y = 40
$5x = \frac{5}{2}$ 2	y = 40 - 10x = 40 - 10 $\cdot \frac{1}{2}$
$3x = \frac{1}{2}$	$= 40 - 10 \cdot \frac{1}{2}$
$x = \frac{1}{2}$	= 35
2	

27. G

Only corr. parts are ever used. $\cong A$, \parallel lines, \perp lines all are used.

28. B

$$RS = \sqrt{(3-2)^2 + (3-6)^2} = \sqrt{10}$$

$$ST = \sqrt{(2-6)^2 + (6-6)^2} = 4$$

$$RT = \sqrt{(6-3)^2 + (6-3)^2} = 3\sqrt{2}$$

These lengths only match the \triangle coordinates in B.

CHALLENGE AND EXTEND, PAGE 265

29. Any diagonal on any face of the cube is the hyp. of a rt. △ whose legs are edges of the cube. Any 2 of these ▲ are ≅ by SAS (or LL). Therefore, any 2 diagonals are ≅ by CPCTC.

30.	Statements	Reasons
	1. Draw <i>MK</i> .	1. Through any 2 pts. there is exactly 1 line.
	2. $\overline{MK} \cong \overline{KM}$	2. Reflex. Prop. of \cong
	3. $\overline{JK} \cong \overline{LM}, \ \overline{JM} \cong \overline{LK}$	3. Given
	4. $\triangle JKM \cong \triangle LMK$	4. SSS Steps 2, 3
	5. $\angle J \cong \angle L$	6. CPCTC

31.	Statements	Reasons
	1. R is the mdpt. of AB.	1. Given
	2. $\overline{AR} \cong \overline{BR}$	2. Def. of mdpt.
	3. RS ⊥ AB	3. Given
	4. ∠ARS and ∠BRS are rt. &	4. Def. of ⊥
	5. ∠ARS \cong ∠BRS	5. Rt. ∠ \cong Thm.
	6. $\overline{RS} \cong \overline{RS}$	6. Reflex. Prop. of \cong
	7. $△$ <i>ARS</i> \cong $△$ <i>BRS</i>	7. SAS Steps 2, 5, 6
	8. $\overline{AS} \cong \overline{BS}$	8. CPCTC
	9. $\angle ASD \cong \angle BSC$	9. Given
	10. <i>S</i> is the mdpt. of \overline{DC} .	10. Given
	11. $\overline{DS} = \overline{CS}$	11. Def. of mdpt.
	12. $\triangle ASD \cong \triangle BSC$	12. SAS Steps 8, 9, 11

32. ∠A ≅ ∠E (given), ∠B and ∠D are rt. ▲ (from figure), and BC ≅ CD (from figure). Therefore, $\triangle ABC \cong \triangle EDC$ by HL. By CPCTC, AB = DE. By Pythag. Thm., $CD^2 + DE^2 = CE^2$ $DE^2 = 21^2 - 10^2$ $AB = DE = \sqrt{441 - 100} \approx 18$ ft

SPIRAL REVIEW, PAGE 265

33.
$$x = \frac{\sum x}{n}$$

 $90 = 90 + 84 + 93 + 88 + 91 + x/6$
 $x = 6(90) - (90 + 84 + 93 + 88 + 91) = 94$
34. $P_1 = 3.95 + 0.08m$
 $P_1(75) = 3.95 + 0.08(75) = 9.95$

- $P_1(75) = 3.95 + 0.08(75) = 9.95$ $P_2 = 0.10 \cdot \min(m, 50) + 0.15 \cdot \max(m - 50, 0)$ $P_2(75) = 0.10(50) + 0.15(75 - 50) = 8.75$ The second plan is cheaper.
- **35.** reflection across the *x*-axis
- **36.** translation $(x, y) \to (x 3, y 4)$
- **37.** Yes; it is given that $\angle B \cong \angle D$ and $\overline{BC} \cong \overline{DC}$. By Vert. \angle Thm., $\angle BCA \cong \angle DCE$. Therefore, $\triangle ABC \cong \triangle EDC$ by ASA.

CONNECTING GEOMETRY TO ALGEBRA: QUADRATIC EQUATIONS, PAGE 266

TRY THIS, PAGE 266

1. Method 1: Factoring

$$FG = FE$$

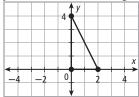
 $x^2 - 3x = 18$
 $x^2 - 3x - 18 = 0$
 $(x - 6)(x + 3) = 0$
 $x = 6 \text{ or } -3$
2. Method 2: Quadratic
Formula
 $x = \frac{-4 \pm \sqrt{16 - 4(1)(-12)}}{2}$
 $= \frac{-4 \pm 8}{2}$
 $= -6 \text{ or } 2$
3. Method 1: Factoring **4.** Method 2: Quadratic

S. Method 1. Pactoring 4. Method 2. Guadratic YX = YZ $x^2 - 4x = 12$ $x^2 - 4x - 12 = 0$ (x - 6)(x + 2) = 0 x = 6 or -2Formula $x = \frac{-2 \pm \sqrt{4 - 4(1)(-3)}}{-2 \pm 4}$ = -3 or 1

4-7 INTRODUCTION TO COORDINATE PROOF, PAGES 267-272

CHECK IT OUT! PAGES 267-269

1. You can place the longer leg along the *y*-axis and the other leg along the *x*-axis.



2. Proof:

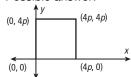
 $\triangle ABC$ is a rt. \triangle with height *AB* and base *BC*. The area of $\triangle ABC = \frac{1}{2}bh$

$$=\frac{1}{2}(4)(6) = 12$$
 square units

By Mdpt. Formula, coordinates of $D = \left(\frac{0+4}{2}, \frac{6+0}{2}\right) = (2, 3)$. The *x*-coord. of *D* is height of $\triangle ADB$, and base is 6 units. The area of $\triangle ADB = \frac{1}{2}bh$

$$=\frac{1}{2}(2)(6) = 6$$
 square units

Since $6 = \frac{1}{2}(12)$, area of $\triangle ADB$ is $\frac{1}{2}$ area of $\triangle ABC$. **3.** Possible answer:



4. $\triangle ABC$ is a rt. \triangle with height 2*j* and base 2*n*. The area of $\triangle ABC = \frac{1}{2}bh$

 $\frac{1}{2}(2n)(2j) = 2nj$ square units

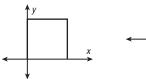
By the Mdpt. Forumla, the coords. of *D* are (n, j). The base of $\triangle ABC$ is 2j units and the height is *n* units.

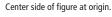
So the area of
$$\triangle ADB = \frac{1}{2}bh$$

= $\frac{1}{2}(2j)(n) = nj$ square units
Since $nj = \frac{1}{2}(2nj)$, the area of $\triangle ADB$ is $\frac{1}{2}$ the area of $\triangle ABC$.

THINK AND DISCUSS, PAGE 269

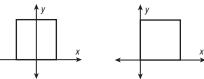
- 1. Possible answer: By using variables, your results are not limited to specific numerical values.
- 2. Possible answer: The way you position the figure will affect the coords. assigned to the vertices and therefore, your calculations.
- **3.** Possible answer: If you need to calculate the coords. of a mdpt., assigning 2*p* allows you to avoid using fractions.
 - Use origin as a vertex. Center figure at origin.





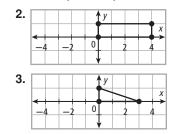
4.

Use axes as sides of figure.



EXERCISES, PAGES 270–272 GUIDED PRACTICE, PAGE 270

1. Possible answer: In coordinate geometry, a coord. proof is one in which you position figures in the coord. plane to prove a result.



4. By the Mdpt. Forumla, the coords of *A* are (0, 3) and the coords. of *B* are (4, 0). By the Dist. Formula

By the Dist. Pointula,

$$PQ = \sqrt{(0-8)^2 + (6-0)^2}$$

$$= \sqrt{(-8)^2 + 6^2} = \sqrt{64 + 36}$$

$$= \sqrt{100} = 10 \text{ units.}$$

$$AB = \sqrt{(0-4)^2 + (3-0)^2}$$

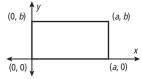
$$= \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9}$$

$$= \sqrt{25} = 5 \text{ units.}$$
So $AB = \frac{1}{2}PQ$.

5. Possible answer:

$$(0, m)$$
 $(0, m)$ $(0, m)$ $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$

6. Possible answer:



7.
$$p (0, 2a)$$

 $A (0, 0)$
 $B Q$
 $(2b, 0) \times Q$

By the Mdpt. Formula, the coords. of A are (0, a) and the coords of B are (b, 0). By the Dist. Formula,

$$PQ = \sqrt{(0 - 2b)^{2} + (2a)^{2}} AB = \sqrt{(0 - b)^{2} + (a - 0)^{2}}$$

= $\sqrt{(-2b)^{2} + (2a)^{2}} = \sqrt{(-b)^{2} + a^{2}}$
= $\sqrt{4b^{2} + 4a^{2}} = \sqrt{b^{2} + a^{2}}$ units
= $2\sqrt{b^{2} + a^{2}}$ units
So $AB = \frac{1}{2}PQ$.

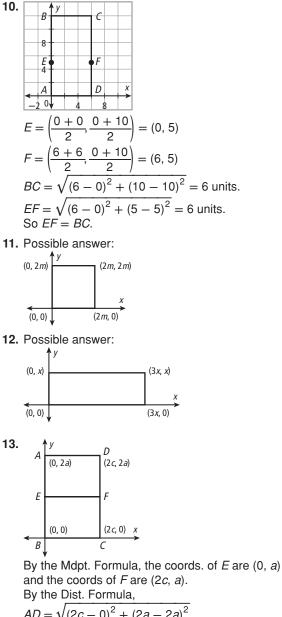
PRACTICE AND PROBLEM SOLVING, PAGES 270–271

8. Possible answer:

			y			
-		 2	-	_	-	
						X
È	— 2	0		-	2	
		1	1			

9. Possible answer:

2	y				
		-	-	-	X
0			2	4	
1	r				



$$AD = \sqrt{(2c - 0)^{2} + (2a - 2a)^{2}}$$

= $\sqrt{(2c)^{2}} = 2c$ units.
Simlarly,
$$EF = \sqrt{(2c - 0)^{2} + (a - a)^{2}}$$

= $\sqrt{(2c)^{2}} = 2c$ units.
So $EF = AD$.

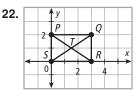
14. Let endpts. be (x, y) and (z, w). By Mdpt. Formula,

 $(0, 0) = \left(\frac{x+z}{2}, \frac{y+w}{2}\right)$ $\frac{x+z}{2} = 0$ x+z = 0 z = -x $\frac{y+w}{2} = 0$ y+w = 0 w = -yEndpts are (x, y) and (-x, -y).

15a.
b. Total distance =
$$EW + WC$$

 $= \sqrt{(3 - 0)^2 + (3 - 0)^2} + \sqrt{(6 - 3)^2 + (0 - 3)^2}$
 $= 3\sqrt{2} + 3\sqrt{2} = 6\sqrt{2} \approx 8.5$
16. Let $A = (0, 0), B = (a, 0), \text{ and } C = (0, 2a).$
Perimeter = $AB + BC + CA$
 $= a + \sqrt{(0 - a)^2 + (2a - 0)^2} + 2a$
 $= a(3 + \sqrt{5})$ units
 $\triangle ABC$ has base AB , height AC .
Area = $\frac{1}{2}bh$
 $= \frac{1}{2}(a)(2a) = a^2$ square units
17. Let $A = (0, 0), B = (s, 0), C = (s, t), \text{ and } D = (0, t).$
Perimeter = $AB + BC + CD + DA$
 $= s + t + s + t = 2s + 2t$ units
Area = $\ell w = st$ square units
18. (n, n)
19. $(p, 0)$
20. $\sqrt{(-23.2 - (-25))^2 + (31.4 - 31.5)^2} \approx 1.8$ units
 $\sqrt{(-24 - (-23.2))^2 + (31.1 - 31.4)^2} \approx 0.9$ units
 $\sqrt{(-24 - (-25))^2 + (31.1 - 31.4)^2} \approx 0.9$ units
 $\sqrt{(-24 - (-25))^2 + (31.1 - 31.5)^2} \approx 1.1$ units
1.8 is twice 0.9. The dist. between another 2
locations.
21. $AB = \sqrt{(70 - (-30))^2 + ((-30) - 50)^2}$
 ≈ 128 nautical miles
Mdpt. of $AB = \left(\frac{-30 + 70}{2}, \frac{50 + (-30)}{2}\right)$
 $= (20.10)$

So, *P* is the mdpt of \overline{AB} .



The area of the rect. is $A = \ell w = 3(2) = 6$ square units. For $\triangle RST$, the base is 3 units, and the height is 1 unit. So the area of

 $\triangle RST = \frac{1}{2}bh = \frac{1}{2}(3)(1) = 1.5$ square units. Since $\frac{1}{4}(6) = 1.5$, the area of $\triangle RST$ is $\frac{1}{4}$ of the area of the rect. 23. By Dist. Formula,

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \text{ and}$$

$$AM = \sqrt{\left(\frac{x_1 + x_2}{2} - x_1\right)^2 + \left(\frac{y_1 + y_2}{2} - y_1\right)^2}$$

$$= \sqrt{\left(\frac{x_1 + x_2}{2} - \frac{2x_1}{2}\right)^2 + \left(\frac{y_1 + y_2}{2} - \frac{2y_1}{2}\right)^2}$$

$$= \sqrt{\frac{1}{4}(x_2 - x_1)^2 + \frac{1}{4}(y_2 - y_1)^2}$$

$$= \frac{1}{2}\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
So $AM = \frac{1}{2}AB$.

24.				4 -	y			
	<u> </u>	Ŀ	-	•		М		
	-	<i>v</i> .		/				
		K				P		X
		-:	2	0,	r	2	2	

Proof: By Dist. Formula, $KL = \sqrt{(-2+2)^2 + (1-3)^2} = \sqrt{0+4} = 2$ $MP = \sqrt{(1-1)^2 + (3-1)^2} = \sqrt{0+4} = 2$ $LM = \sqrt{(-2-1)^2 + (3-3)^2} = \sqrt{9+0} = 3$ $PK = \sqrt{(1+2)^2 + (1-1)^2} = \sqrt{9+0} = 3$ Thus KL = MP and LM = PK by Trans. Prop. of \cong . $KL \cong MP$ and $\overline{LM} \cong \overline{PK}$ by def. of \cong , and $\overline{KM} \cong MK$ by Reflex. Prop. of \cong . Thus $\triangle KLM \cong \triangle MPK$ by SSS.

25. You are assuming the figure has a rt. \angle .

26a.
$$BD = BC + CD$$

 $= AE + CD$
 $= 28 + 10 = 38$ in.
By Dist. Formula,
 $DE = \sqrt{CD^2 + CE^2}$
 $CE^2 = DE^2 - CD^2$
 $CE = \sqrt{26^2 - 10^2} = 24$ in.
b. $B = (24, 0); C = (24, 28); D = (24, 38); E = (0, 28)$

TEST PREP, PAGE 272

- 27. B; Mdpt. Formula shows B is true.
- 28. F; G, H, and J are all possible vertices.
- **29.** D; Perimeter = a + b + a + b = 2a + 2b

30. H;
$$\left(\frac{-1+7}{2}, \frac{2+8}{2}\right) = (3, 5) = C$$

CHALLENGE AND EXTEND, PAGE 272

- **31.** (*a* + *c*, *b*)
- **32.** (n + p n, h h) = (p, 0)
- **33.** Possible answer: Rotate \triangle 180° about (0, 0) and translate by (0, 2*s*). The new coords. would be (0, 0), (2*s*, 0), (0, 2*s*).

34. *E* is intersection of 2 given lines. At *E*,
$$y = \frac{g}{f}x$$
 and
 $y = -\frac{g}{f}x + 2g$.
 $\frac{g}{f}x = -\frac{g}{f}x + 2g$ Set eqns. = to each other.
 $2\frac{g}{f}x = 2g$ Combine like terms.
 $x = f$ Simplify.
 $y = \frac{g}{f}x$ Given
 $y = \frac{g}{f}f$ Subst.
 $y = g$ Simplify.
 $E = (f, g)$

SPIRAL REVIEW, PAGE 272

35.
$$x = \frac{-18 \pm \sqrt{18^2 - 4(8)(-5)}}{2(8)}$$

 $= \frac{-18 \pm 22}{16} = \frac{1}{4} \text{ or } -2\frac{1}{4}$
36. $x = \frac{-3 \pm \sqrt{(-3)^2 - 4(1)(-5)}}{2(1)}$
 $= \frac{-3 \pm \sqrt{29}}{2} \approx 1.19 \text{ or } -4.19$
37. $x = \frac{1 \pm \sqrt{(-1)^2 - 4(3)(-10)}}{2(3)}$
 $= \frac{1 \pm 11}{6} = 2 \text{ or } -1\frac{2}{3}$
38. Think:
Use Supp. Int. $\&$ Thm.
 $x + 68 = 180$
 $x = 112$
 $2y = 44$
 $y = 22$
40. $AB = 3$
 $BC = \sqrt{(-3 + 1)^2 + (1 - 3)^2} = 2\sqrt{2}$

 $AC = \sqrt{(-3+4)^2 + (1-3)^2} = \sqrt{5}$ ED = 3 $DF = \sqrt{(2-0)^2 + (-4+2)^2} = 2\sqrt{2}$ $EF = \sqrt{(2-3)^2 + (-4+2)^2} = \sqrt{5}$ Therefore, $\triangle ABC \cong \triangle EDF$ by SSS, and $\angle ABC \cong \angle EDF$ by CPCTC.

4-8 ISOSCELES AND EQUILATRAL TRIANGLES, PAGES 273–279

CHECK IT OUT! PAGES 274-275

1. 4.2×10^{13} ; since there are 6 months between September and March, the ∠ measures will be approx. the same between Earth and the star. By the Conv. of the Isosc. \triangle Thm., the \triangle created are isosc., and the dist. is the same.

2a.
$$m \angle G = m \angle H = x$$

 $m \angle F + m \angle G + m \angle H = 180$
 $48 + x + x = 180$
 $2x = 132$
 $x = 66$
Thus $m \angle H = x = 66^{\circ}$.

b.
$$M \ge N = M \ge P$$

 $6y = 8y - 16$
 $16 = 2y$
 $y = 8$
Thus $m \ge N = 6y = 6(8) = 48^{\circ}$.
3. $\triangle JKL$ is equilateral.
 $4t - 8 = 2t + 1$
 $2t = 9$
 $t = 4.5$
 $JL = 2t + 1$
 $= 2(4.5) + 1 = 10$
4. Proof:
By Mdpt. Formula, coords. of *X* are
 $\left(\frac{-2a + 0}{2}, \frac{0 + 2b}{2}\right) = (-a, b)$, coords. of *Y* are
 $\left(\frac{2a + 0}{2}, \frac{0 + 2b}{2}\right) = (a, b)$, and coords of *Z* are
 $\left(\frac{-2a + 2a}{2}, \frac{0 + 0}{2}\right) = (0, 0)$.
By Dist. Formula,
 $XZ = \sqrt{(0 + a)^2 + (0 - b)^2} = \sqrt{a^2 + b^2}$, and

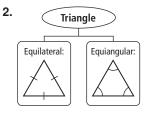
 $YZ = \sqrt{(0-a)^2 + (0-b)^2} = \sqrt{a^2 + b^2}$ Since XZ = YZ, $\overline{XZ} \cong \overline{YZ}$ by definition. So $\triangle XYZ$ is isosc.

Y are

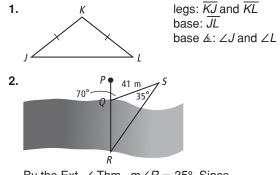
Zare

THINK AND DISCUSS, PAGE 276

1. An equil. \triangle is also an equiangular \triangle , so the 3 \measuredangle have the same measure. They must add up to 180° by the \triangle Sum Thm. So each \angle must measure 60°.



EXERCISES, PAGES 276-279 GUIDED PRACTICE, PAGE 276



By the Ext. \angle Thm., m $\angle R = 35^{\circ}$. Since $m \angle R = m \angle S$ by the Conv. of the Isosc. \triangle Thm., QR = QS = 41 m.

3. Think: Use Isosc. \triangle Thm., $\triangle \angle$ Sum Thm., and Vert. ∠ Thm. $m \angle B = m \angle A = 31^{\circ}$ $m \angle A + m \angle B + m \angle ABC = 180$ $31 + 31 + m \angle ABC = 180$ $m \angle ABC = 118^{\circ}$ $m \angle ECD = m \angle ABC = 118^{\circ}$ **4.** Think: Use Isosc. \triangle Thm. and $\triangle \angle$ Sum Thm. $m \angle J = m \angle K$ $m \angle J + m \angle K + m \angle L = 180$ $2m\angle K + 82 = 180$ $2m\angle K = 98$ $m \angle K = 49^{\circ}$ **5.** Think: Use Isosc. \triangle Thm. $m \angle X = m \angle Y$ 5t - 13 = 3t + 32t = 16*t* = 8 $m \angle X = 5t - 13 = 27^{\circ}$ **6.** Think: Use Isosc. \triangle Thm. and $\triangle \angle$ Sum Thm. $m \angle B = m \angle C = 2x$ $m \angle A + m \angle B + m \angle C = 180$ 4x + 2x + 2x = 1808x = 180*x* = 22.5 $m \angle A = 4x = 90^{\circ}$ **7.** Think: Use Equilat. \triangle Thm. and $\triangle \angle$ Sum Thm. $\angle R \cong \angle S \cong \angle T$ $m \angle R + m \angle S + m \angle T = 180$ 12y + 12y + 12y = 18036y = 180v = 5**8.** Think: Use Equilat. \triangle Thm. and $\triangle \angle$ Sum Thm. $\angle L \cong \angle M \cong \angle N$ $m \angle L + m \angle M + m \angle N = 180$ 3(10x + 20) = 18030x = 120x = 4**9.** Think: Use Equiang. \triangle **10.** Think: Use Equiang. \triangle Thm. Thm. $\overline{AB} \cong \overline{BC} \cong \overline{AC}$ $\overline{HJ} \cong \overline{JK} \cong \overline{HK}$ BC = ACHJ = JK6y + 2 = -y + 237t + 15 = 10t7y = 2115 = 3t*y* = 3 t = 5BC = 6y + 2JK = 10t= 6(3) + 2 = 20= 10(5) = 50It is given that $\triangle ABC$ is rt. isosc., $\overline{AB} \cong \overline{BC}$, and X

11. Proof:

is the mdpt. of \overline{AC} . By Mdpt. Formula, coords. of X are $\left(\frac{0+2a}{2}, \frac{2a+0}{2}\right) = (a, a)$. By Dist. Formula, $AX = \sqrt{(a-0)^2 + (a-2a)^2} = a\sqrt{2}$ and

 $BX = \sqrt{(a-0)^2 + (a-a)^2} = a\sqrt{2} = AX.$ So $\triangle AXB$ is isosc. by def. of an isosc. \triangle .

PRACTICE AND PROBLEM SOLVING, PAGE 277-278

12. By \angle Add. Post., m $\angle ATB = 80 - 40 = 40^{\circ}$. $m \angle BAT = 40^{\circ}$ by Alt. Int. \measuredangle Thm. $\angle ATB \cong \angle BAT$ by def. of \cong . Since $\triangle ABT$ is isosc. by Conv. of Isosc. \triangle Thm.. BT = BA = 2.4 mi. **13.** Think: use Isosc. \triangle Thm., $\triangle \angle$ Sum Thm., and Vert. & Thm. $m \angle B = m \angle ACB$ $m \angle A + m \angle B + m \angle ACB = 180$ $96 + 2m \angle ACB = 180$ $m \angle ACB = 42^{\circ}$ $m \angle DCE = m \angle ACB = 42^{\circ}$ $m \angle D = m \angle E$ $m \angle D + m \angle E + m \angle DCE = 180$ $2m\angle E + 42 = 180$ $m \angle E = 69^{\circ}$ **14.** Think: Use Isosc. \triangle Thm. and $\triangle \angle$ Sum Thm. $m \angle U = m \angle S = 57^{\circ}$ $m \angle SRU + m \angle S + m \angle U = 180$ $m\angle SRT + m\angle TRU + 57 + 57 = 180$ 2m∠*TRU* = 66 $m \angle TRU = 33^{\circ}$ **15.** m∠*D* = m∠*E* $x^2 = 3x + 10$ $x^2 - 3x - 10 = 0$ (x-5)(x+2) = 0x = 5 or -2 $m \angle D + m \angle E + m \angle F = 180$ $x^2 + 3x + 10 + m \angle F = 180$ $m \angle F = 180 - 50 \text{ or } 180 - 8$ $= 130^{\circ} \text{ or } 172^{\circ}$ **16.** Think: Use Isosc. \triangle Thm. and $\triangle \angle$ Sum Thm. $m \angle A = m \angle B = (6y + 1)^{\circ}$ $m \angle A + m \angle B + m \angle C = 180$ 2(6y + 1) + 21y + 3 = 18033v = 165 $y = 5^{\circ}$ $m \angle A = 6y + 1 = 31^{\circ}$ **17.** Think: Use Equilat. \triangle Thm. and $\triangle \angle$ Sum Thm. $\angle F \cong \angle G \cong \angle H$ $m \angle F + m \angle G + m \angle H = 180$ $3\left(\frac{z}{2} + 14\right) = 180$ z + 28 = 120z = 92**18.** Think: Use Equilat. \triangle Thm. and $\triangle \angle$ Sum Thm. $\angle L \cong \angle M \cong \angle N$ $m \angle L + m \angle M + m \angle N = 180$ 3(1.5y - 12) = 180y - 8 = 40y = 48

19. Think: **20.** Think: use Equiang. \triangle Thm. use Equiang. \triangle Thm. $\overline{BC} \cong \overline{CD} \cong \overline{BD}$ $\overline{XY} \cong \overline{YZ} \cong \overline{XZ}$ BC = CDXY = XZ $\frac{3}{2}x + 2 = \frac{5}{4}x + 6$ $2x = \frac{5}{2}x - 5$ 6x + 8 = 5x + 24 $5 = \frac{1}{2}x$ *x* = 16 $BC = \frac{3}{2}x + 2$ *x* = 10 XZ = XY $=\frac{3}{2}(16) + 2 = 26$ = 2x= 2(10) = 20

21. Proof: It is given that $\triangle ABC$ is isosc., $\overline{AB} \cong \overline{AC}$, *P* is mdpt. of \overline{AB} , and *Q* is mdpt. of \overline{AC} . By Mdpt. Formula, coords. of *P* are (*a*, *b*), and coords. of *Q* are (3*a*, *b*). By Dist. Formula,

 $PC = QB = \sqrt{9a^2} + b^2$, so $\overline{PC} \cong \overline{QB}$ by def. of \cong .

- 22. always
- 23. sometimes
- 24. sometimes
- 25. never
- **26.** No; if a base \angle is obtuse, the other base \angle must also be obtuse since they are \cong . But the sum of the \angle measures of the \triangle cannot be > 180°.

27a. $\overline{PS} \cong \overline{PT}$, so by Isosc. \triangle Thm., $m \angle PTS = m \angle PST = 71^{\circ}$. By $\triangle \angle$ Sum Thm, $m \angle SPT + m \angle PTS + m \angle PST = 180$ $m \angle SPT + 71 + 71 = 180$ $m \angle SPT = 38^{\circ}$

b.
$$\overline{PQ} \cong \overline{PR}$$
, so by Isosc. \triangle Thm.,
 $m \angle PQR = m \angle PRQ$. $By \triangle \angle Sum$ Thm,
 $m \angle PQR + m \angle PRQ + m \angle QPR = 180$
 $2m \angle PQR + (m \angle QPS + m \angle SPT + m \angle TPR) = 180$
 $2m \angle PQR + 18 + 38 + 18 = 180$
 $2m \angle PQR = 106$
 $m \angle PQR = 53^{\circ}$
 $m \angle PRQ = 53^{\circ}$

28. Let
$$3rd \angle of \triangle be \angle 4$$
.
 $m \angle 1 = m \angle 4 = 58^{\circ}$ (Alt. Int. \measuredangle Thm., Isosc. \triangle Thm.)
 $m \angle 2 + 58 + 58 = 180$
 $m \angle 2 = 64^{\circ}$
 $m \angle 2 + m \angle 3 = 180$ (supp. \measuredangle)
 $58 + m \angle 3 = 180$
 $m \angle 3 = 122^{\circ}$
29. Let $3rd \angle of$ left $\triangle be \angle 4$.
 $m \angle 3 = m \angle 4$ (Isosc. \triangle Thm.)
 $m \angle 3 + m \angle 4 + 74 = 180$
 $2m \angle 3 = 106$
 $m \angle 3 = 53^{\circ}$
 $m \angle 1 + m \angle 4 = 180$ (supp. \measuredangle)
 $m \angle 1 + 53 = 180$
 $m \angle 1 = 127^{\circ}$
Let $3rd \angle of$ right $\triangle be \angle 5$.
 $m \angle 2 = m \angle 5$ (Isosc. \triangle Thm.)
 $m \angle 1 + m \angle 2 + m \angle 5 = 180$
 $127 + 2m \angle 2 = 180$
 $m \angle 2 = 26.5^{\circ}$

- **30. Proof:** It is given that $\triangle ABC$ is isosc., $\overline{BA} \cong \overline{BC}$, and X is the mdpt. of \overline{AC} . Assign the coords. A(0, 2a), B(0, 0), and C(2a, 0). By the Mdpt. Formula, coords. of X are (a, a). By Dist. Formula, $AX = XB = XC = a\sqrt{2}$. So $\triangle AXB \cong \triangle CXB$ by SSS.
- 31. Check students' drawings. The are approx. 34°, 34°, and 112°. Conjecture should be that is isosc. Conjecture is correct since two short sides have equal measure (√65 units).
- **32.** List all (unordered) triples of natural numbers such that:
 - at least two are equal
 - sum of leg lengths > base length
 - perimeter is 18

4 (5, 5, 8), (6, 6, 6), (7, 7, 4), (8, 8, 2).

33. In left ∆: 40 + *x* + *x* = 180

$$2x = 140$$

 $x = 70$
In right $\triangle: x + 2(3y - 5) = 180$
 $60 + 6y = 180$
 $y = 20$

x = 3

34. In left \triangle : all ∠s measure 60°. In right \triangle : obtuse ∠ measures 180° - 60° = 120°. 2(5x + 15) + 120 = 180 10x + 150 = 180

Statements	Reasons
1. <i>△DEF</i>	1. Given
 Draw the bisector of ∠EDF so that it intersects EF at X. 	 Every ∠ has a unique bisector.
3. $\angle EDX \cong \angle FDX$	 Def. of ∠ bisector
4. $\overline{DX} \cong \overline{DX}$	4. Refl. Prop. of ≅
5. $\angle E \cong \angle F$	5. Given
6. $△$ <i>EDX</i> \cong $△$ <i>FDX</i>	6. AAS Steps 3, 5, 4
7. $\overline{DE} \cong \overline{DF}$	7. CPCTC

36a. ∠*B* ≅ ∠*C*

b. Isosc. riangle Thm

c. Trans. Prop. of \cong

- **37.** $\triangle DEF$ with $\angle D \cong \angle E \cong \angle F$ is given. Since $\angle E \cong \angle F$, $\overline{DE} \cong \overline{DF}$ by Conv. of Isosc. \triangle Thm. Similarly, since $\angle D \cong \angle F$, $\overline{EF} \cong \overline{DE}$. By the Trans. Prop. of \cong , $\overline{EF} \cong \overline{DF}$. Combining the \cong statements, $\overline{DE} \cong \overline{DF} \cong \overline{EF}$, and $\triangle DEF$ is equil. by def.
- **38.** By the Ext. \angle Thm., m $\angle C = 45^{\circ}$, so $\angle A \cong \angle C$. BC = AB by the Conv. of the isosc. \triangle Thm. So the distance to island C is the same as the distance traveled from A to B.

- **39.** 1. $\triangle ABC \cong \angle CBA$ (Given)
 - 2. $\overline{AB} \cong \overline{CB}$ (CPCTC)
 - 3. $\triangle ABC$ (Def. of Isosc. ρ)
- **40.** Two sides of a \triangle are \cong if and only if the \pounds opp. those sides are \cong .

41.	Statements	Reasons
	1. $\triangle ABC$ and $\triangle DEF$	1. Given
	2. Draw \overrightarrow{EF} so that $FG = CB$.	2. Through any 2 pts. there is exactly 1 line.
	3. $\overline{FG} \cong \overline{CB}$	3. Def. of \cong segs.
	4. $\overline{AC} \cong \overline{DF}$	4. Given
	5. ∠ <i>C</i> , ∠ <i>F</i> are rt. .	5. Given
	6. <i>DF</i> ⊥ <i>EG</i>	6. Def. of \perp lines
	7. ∠ <i>DFG</i> is rt. ∠	7. Def. of rt. ∠
	8. $\angle DFG \cong \angle C$	8. Rt. $\angle \cong$ Thm.
	9. $△$ <i>ABC</i> \cong $△$ <i>DGF</i>	9. SAS Steps 3, 8, 4
	10. $\overline{DG} \cong \overline{AB}$	10. CPCTC
	11. <i>AB</i> ≅ <i>DE</i>	11. Given
	12. <i>DG</i> ≅ <i>DE</i>	12. Trans. Prop. of \cong
	13. ∠ <i>G</i> ≅ ∠ <i>E</i>	13. Isosc. △ Thm.
	14. ∠DFG \cong ∠DFE	14. Rt. ∠ \cong Thm.
	15. $△DGF \cong △DEF$	15. AAS Steps 13, 14, 12
	16. $\triangle ABC \cong \triangle DEF$	16. Trans. Prop. of \cong

42. A

	$m \angle VUT = m \angle VTU$		
	$2m\angle VUT + m\angle VTU +$	m∠ <i>TUV</i> = 180	
	$2m \angle VUT + 20 = 180$		
		$m \angle VUT = 80^{\circ}$	
	$m \angle VUR + m \angle VUT = 90$		
	$m \angle VUR + 80 = 90$		
	$m \angle VUR = 10^{\circ}$		
43.	Н	44. 13.5	
	y + 10 = 3y - 5	6t - 9 + 4t + 4t = 18	0
	15 = 2y	14t = 18t	9
	$y = 7\frac{1}{2}$	t = 13	.5
	,		

CHALLENGE AND EXTEND, PAGE 279

45. It is given that $\overline{JK} \cong \overline{JL}$, $\overline{KM} \cong \overline{KL}$, and $m \angle J = x^{\circ}$. By the \triangle Sum Thm., $m \angle JKL + m \angle JLK + x^{\circ} = 180^{\circ}$. By the Isosc. \triangle Thm., $m \angle JKL = m \angle JLK$. So $2(m \angle JLK) + x^{\circ} = 180^{\circ}$. or $m \angle JLK = \left(\frac{180 - x}{2}\right)^\circ$. Since $m \angle KML = m \angle JLK$, $m \angle KML = \left(\frac{180 - x}{2}\right)^\circ$ by the Isosc. \triangle Thm. By the \triangle Sum Thm., m $\angle MKL + m \angle JLK + m \angle KML = 180^{\circ}$ or m $\angle MKL = 180^{\circ} - \left(\frac{180 - x}{2}\right)^{\circ} - \left(\frac{180 - x}{2}\right)^{\circ}$. Simplifying gives $m \angle MKL = x^{\circ}$.

46. Let
$$A = (x, y)$$
.
 $4a^2 = AB^2$
 $= x^2 + y^2$
 $= AC^2$
 $= (x - 2a)^2 + y^2$
 $= x^2 - 4ax + 4a^2 + y^2$
 $= 4a^2 - 4ax + 4a^2$
 $4ax = 4a^2$
 $x = a$
 $y = \pm \sqrt{4a^2 - x^2}$
 $= \pm a\sqrt{3}$
 $(x, y) = (a, a\sqrt{3})$
47. (2a, 0), (0, 2b), or any pt. on the \perp bisector of \overline{AB} .
SPIRAL REVIEW, PAGE 279
48. $x^2 + 5x + 4 = 0$
 $(x + 4)(x + 1) = 0$
 $x = -4$
 $or -1$
50. $x^2 - 2x + 1 = 0$
 $(x - 1)(x - 1) = 0$
 $x = 1$
 $= \frac{5 - (-1)}{0 - 2}$
 $= \frac{6}{-2} = -3$
52. $m = \frac{y_2 - y_1}{x_2 - x_1}$
53. $m = \frac{y_2 - y_1}{x_2 - x_1}$

52.
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

 $= \frac{-10 - (-10)}{20 - (-5)} = 0$
53. $m = \frac{y_2 - y_1}{x_2 - x_1}$
 $= \frac{11 - 7}{10 - 4}$
 $= \frac{4}{6} = \frac{2}{3}$

54. Possible answer:

$$(0, s) \downarrow (s, s)$$

MULTI-STEP TEST PREP, PAGE 280

1. Measure \overline{AB} , \overline{BC} , and \overline{CA} . If these three lengths are the same for each truss, then the trusses all have the same size and shape by SSS.

2.	Statements	Reasons
	1. $\overline{CD} \perp \overline{AB}$	1. Given
	2. $\angle CDA$ and $\angle CDB$ are rt. \pounds .	2. Def. of ⊥
	3. $\triangle CDA$ and $\triangle CDB$ are rt. \triangle .	3. Def. of rt. 🛦
	4. $\overline{AC} \cong \overline{BC}$	4. Given
	5. $\overline{CD} \cong \overline{CD}$	5. Reflex. Prop. of \cong
	6. $\triangle CDA \cong \triangle CDB$	6. HL Steps 4, 5

- **3.** $\overline{AD} \cong \overline{DB}$ by CPCTC. AD = BD = 12 in. and $AC = BC = \sqrt{9^2 + 12^2} = 15$ in.
- 4. Possible answer: A(0, 0), B(24, 0), C(12, 9)

or 1

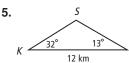
- 5. $m \angle A = m \angle B = 37^{\circ};$ base \measuredangle of an isosc. \triangle are \cong , so $2m \angle A + 106 = 180$
- 6. Length of wood = 4(AB + BC + AC)= 4(24 + 15 + 15)= 216 in. = 18 ft = 3(6 ft) Cost = (18 ft)(\$0.80/ft) = \$14.40

READY TO GO ON? PAGE 281

1. It is given that $\overline{AC} \cong \overline{BC}$, and $\overline{DC} \cong \overline{DC}$ by Reflex. Prop. of \cong . By the Rt. $\angle \cong$ Thm., $\angle ACD \cong \angle BCD$. Therefore, $\triangle ACD \cong \triangle BCD$ by SAS.

2.	Statements	Reasons
	1. \overline{JK} bisects $\angle MJN$.	1. Given
	2. ∠ <i>MJK</i> \cong ∠ <i>NJK</i>	2. Def. of ∠ bisector
	3. $\overline{MJ} \cong \overline{NJ}$	3. Given
	4. $\overline{JK} \cong \overline{JK}$	4. Reflex. Prop of \cong
	5. $\triangle MJK \cong \triangle NJK$	5. SAS Steps 3, 2, 4

3. Yes, since $\overline{SU} \cong \overline{US}$.



- **4.** No; need $\overline{AC} \cong \overline{DB}$.
- Yes; the △ is uniquely determined by ASA.

7.	Statements	Reasons
	1. $\overline{CD} \parallel \overline{BE}$ and $\overline{DE} \parallel \overline{CB}$	1. Given
	2. ∠ <i>DEC</i> \cong ∠ <i>BCE</i> and ∠ <i>DCE</i> \cong ∠ <i>BEC</i>	2. Alt. Int. 🛦 Thm.
	3. $\overline{CE} \cong \overline{EC}$	3. Reflex. Prop of \cong
	4. $△$ <i>DEC</i> \cong $△$ <i>BCE</i>	4. ASA Steps 2, 3
	5. $\angle D \cong \angle B$	5. CPCTC

8. Check students' drawings; possible answer: vertices at (0, 0), (9, 0), (9, 9), and (0, 9).

9. It is given that *ABCD* is a rect. *M* is the mdpt. of \overline{AB} , and *N* is the mdpt. of \overline{AD} . Use coords. A(0, 0), B(2a, 0), C(2a, 2b), and D(0, 2b). By Mdpt. Formula, coords. of *M* are $\left(\frac{0+2a}{2}, \frac{0+0}{2}\right) = (a, 0)$, and coords. of *N* are $\left(\frac{0+0}{2}, \frac{0+2b}{2}\right) = (0, b)$. Area of rect. $ABCD = \ell w = (2a)(2b) = 4ab$. Area of $\triangle AMN = \frac{1}{2}bh = \frac{1}{2}ab$, which is $\frac{1}{8}$ the area of rect. ABCD. 10. $m \angle E = m \angle D = 2x^{\circ}$ $m \angle C + m \angle D + m \angle E = 180$

$$m \angle C + m \angle D + m \angle E = 180$$

$$5x + 2x + 2x = 180$$

$$9x = 180$$

$$x = 20$$

$$m \angle C = 5x = 100^{\circ}$$

11. By Equiang. \triangle Thm., $\overline{RS} \cong \overline{RT} \cong \overline{ST}$ RS = RT 2w + 5 = 8 - 4w 6w = 3 w = 0.5ST = RS = 2(0.5) + 5 = 6

12. It is given that isosc. $\triangle JKL$ has coords. J(0, 0), K(2a, 2b), and L(4a, 0). M is mdpt. of \overline{JK} , and N is mdpt. of \overline{KL} . By Mdpt. Formula, coords. of M are $\left(\frac{0+2a}{2}, \frac{0+2b}{2}\right) = (a, b)$, and coords. of N are $\left(\frac{2a+4a}{2}, \frac{2b+0}{2}\right) = (3a, b)$. By Dist. Formula, $MK = \sqrt{(2a-a)^2 + (2b-b)^2} = \sqrt{a^2 + b^2}$, and $NK = \sqrt{(2a-3a)^2 + (2b-b)^2} = \sqrt{a^2 + b^2}$. Thus $\overline{MK} \cong \overline{NK}$. So $\triangle KMN$ is isosc. by def. of isosc. \triangle .

STUDY GUIDE: REVIEW, PAGES 284–287

- 1. isosceles 2. corresponding angles
- 3. included side

LESSON 4-1, PAGE 284

4. equiangular; equilat. 5. obtuse; scalene

LESSON 4-2, PAGE 284

6. Think: Use Ext. \angle Thm. $m \angle N + m \angle P = m(ext. \angle Q)$ y + y = 120 y = 60 $m \angle N = y = 60^{\circ}$ 7. Think: Use $\triangle \angle$ Sum Thm.

m∠L + m∠M + m∠N = 180 8x + 2x + 1 + 6x - 1 = 180 16x = 180 x = 11.25m∠N = $6x - 1 = 66.5^{\circ}$

LESSON 4-3, PAGE 285

8. $\overline{PR} \cong \overline{XZ}$	9. $\angle Y \cong \angle Q$
10. $m \angle CAD = m \angle ACB$	11. <i>CD</i> = <i>AB</i>
2x - 3 = 47	3y + 1 = 15 - 4y
2x = 50	7y = 14
<i>x</i> = 25	<i>y</i> = 2
	CD = 3y + 1 = 7

LESSON 4-4, PAGE 285

12.	Statements	Reasons
	1. $\overline{AB} \cong \overline{DE}, \ \overline{DB} \cong \overline{AE}$	1. Given
	2. $\overline{DA} \cong \overline{AD}$	2. Reflex. Prop. of \cong
	3. $△ADB \cong △DAE$	3. SSS Steps 1, 2

13.	Statements	Reasons
	1. \overline{GJ} bisects \overline{FH} , and \overline{FH} bisects \overline{GJ} .	1. Given
	2. $\overline{GK} \cong \overline{JK}, \overline{FK} \cong \overline{HK}$	2. Def. of seg. bisector
	3. ∠GKF \cong ∠JKH	3. Vert. \land Thm.
	4. $△$ <i>FGK</i> \cong $△$ <i>HJK</i>	4. SAS Steps 2, 3

- **14.** $BC = x^2 + 36 = (-6)^2 + 36 = 72$ $YZ = 2x^2 = 2(-6)^2 = 72 = BC$ $\overline{BC} \cong \overline{YZ}; \ \angle C \cong \ \angle Z; \ \overline{AC} \cong \overline{XZ}. \ \text{So} \ \triangle ABC \cong \ \triangle XYZ$ by SAS.
- **15.** PQ = y 1 = 25 1 = 24 QR = y = 25 $PR = y^2 - (y - 1)^2 - 42 = (25)^2 - (24)^2 - 42 = 7$ $\overline{LM} \cong \overline{PQ}; \ \overline{MN} \cong \overline{QR}; \ \overline{LN} \cong \overline{PR}.$ So $\triangle LMN \cong \triangle PQR$ by SSS.

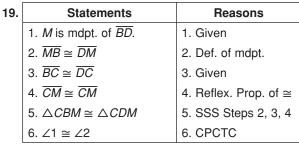
LESSON 4-5, PAGE 286

16.	Statements	Reasons
	1. C is mdpt. of AG.	1. Given
	2. $\overline{GC} \cong \overline{AC}$	2. Def. of mdpt
	3. HA GB	3. Given
	4. ∠HAC \cong ∠BGC	4. Alt. Int. 🖄 Thm.
	5. ∠HCA \cong ∠BCG	5. Vert. \land Thm.
	6. $\triangle HAC \cong \triangle BGC$	6. ASA Steps 4, 2, 5

17.	Statements	Reasons
	1. $\overline{WX} \perp \overline{XZ}, \ \overline{YZ} \perp \overline{ZX}$	1. Given
	2. $\angle WXZ$, $\angle YZX$ are rt. \measuredangle .	2. Def. of \perp
	3. $\triangle WXZ$, $\triangle YZX$ are rt. \triangle .	3. Def. of rt. △
	4. $\overline{XZ} \cong \overline{ZX}$	4. Reflex. Prop. of \cong
	5. $\overline{WZ} \cong \overline{YX}$	5. Given
	6. $\triangle WZX \cong \triangle YXZ$	6. HL Steps 5, 4

18.	Statements	Reasons
	1. ∠ <i>S</i> , ∠ <i>V</i> are rt. $▲$.	1. Given
	2. $\angle S \cong \angle V$	2. Rt. ∠ \cong Thm.
	3. $RT = UW$	3. Given
	4. $\overline{RT} \cong \overline{UW}$	4. Def. of $≅$
	5. m $\angle T = m \angle W$	5. Given
	6. $\angle T \cong \angle W$	6. Def. of ≅
	7. $\triangle RST \cong \triangle UVW$	7. AAS Steps 2, 6, 4

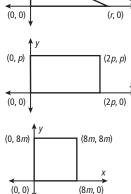
LESSON 4-6, PAGE 286



20.	Statements	Reasons
	1. $\overline{PQ} \cong \overline{RQ}$	1. Given
	2. $\overline{PS} \cong \overline{RS}$	2. Given
	3. $\overline{QS} \cong \overline{QS}$	3. Reflex. Prop. of \cong
	4. $\triangle PQS \cong \triangle RQS$	4. SSS Steps 1, 2, 3
	5. $\angle PQS \cong \angle RQS$	5. CPCTC
	6. <i>QS</i> bisects ∠ <i>PQR</i> .	 Def. of ∠ bisector

21.	Statements	Reasons
	1. <i>H</i> is mdpt. of \overline{GJ} , <i>L</i> is mdpt. of \overline{MK} .	1. Given
	2. $GH = JH$, $ML = KL$	2. Def. of mdpt.
	3. $\overline{GH} \cong \overline{JH}, \ \overline{ML} \cong \overline{KL}$	3. Def. of $≅$
	4. $\overline{GJ} \cong \overline{KM}$	4. Given
	5. $\overline{GH} \cong \overline{KL}$	5. Div. Prop. of \cong
	6. $\overline{GM} \cong \overline{KJ}, \angle G \cong \angle K$	6. Given
	7. $\triangle GMH \cong \triangle KJL$	7. ASA Steps 5, 6
	8. $\angle GMH \cong \angle KJL$	8. CPCTC

- **22.** Check students' drawings; e.g., (0, 0), (*r*, 0), (0, *s*)
- **23.** Check students' drawings; e.g., (0, 0), (2p, 0), (2p, p), (0, p)
- **24.** Check students' drawings; e.g., (0, 0), (8*m*, 0), (8*m*, 8*m*), (0, 8*m*)



, (0, *s*)

LESSON 4-7, PAGE 287

- **25.** Use coords. *A*(0, 0), *B*(2*a*, 0), *C*(2*a*, 2*b*), and *D*(0, 2*b*). Then by Mdpt. Formula, the mdpt. coords are *E*(*a*, 0), *F*(2*a*, *b*), *G*(*a*, 2*b*), and *H*(0, *b*). By Dist. Formula, $EF = \sqrt{(2a - a)^2 + (b - 0)^2} = \sqrt{a^2 + b^2}$, and $GH = \sqrt{(0 - a)^2 + (b - 2b)^2} = \sqrt{a^2 + b^2}$. So $\overline{EF} \cong \overline{GH}$ by def. of \cong .
- **26.** Use coords. P(0, 2b), Q(0, 0), and R(2a, 0). By Mdpt. Formula, mdpt. coords are M(a, b). By Dist. Formula, $QM = \sqrt{(a-0)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$, $PM = \sqrt{(a-0)^2 + (b-2b)^2} = \sqrt{a^2 + b^2}$, and $RM = \sqrt{(2a-a)^2 + (0-b)^2} = \sqrt{a^2 + b^2}$. So QM = PM = RM. By def., *M* is equidistant from vertices of $\triangle PQR$.
- 27. In a rt. \triangle , $a^2 + b^2 = c^2$. $\sqrt{(3-3)^2 + (5-2)^2} = 3$, $\sqrt{(3-2)^2 + (2-5)^2} = \sqrt{10}$, $\sqrt{(2-3)^2 + (5-5)^2} = 1$, and $3^2 + 1^2 = (\sqrt{10})^2$. Since 9 + 1 = 10, it is a rt. \triangle .

LESSON 4-8, PAGE 287

28. Think: Use Equilat. \triangle Thm. and $\triangle \angle$ Sum Thm. $m \angle K = m \angle L = m \angle M$ $m \angle K + m \angle L + m \angle M = 180$ 3(45 - 3x) = 180 -45 = 9x x = -529. Think: Use Conv. of Isosc. \triangle Thm. $\overline{RS} \cong \overline{RT}$ RS = RT 1.5y = 2y - 4.5 4.5 = 0.5y y = 9 RS = 1.5y = 13.530. $\overline{AB} \cong \overline{BC}$

AB = BC AB = BC x + 5 = 2x - 3 8 = xPerimeter = AC + CD + AD = 2AB + CD + CD = 2(x + 5) + 2(2x + 6) = 6x + 22 = 6(8) + 22 = 70 units

CHAPTER TEST, PAGE 288

- **1.** Rt. △
- **2.** scalene \triangle (*AC* = 4 by Pythag. Thm)
- **3.** isosc. \triangle (AC = BC = 4)
- **4.** scalene \triangle (*BD* = 4 + 3 = 7)

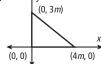
5. $m \angle RTP = 2m \angle RTS$ $m \angle RTP + m \angle RTS = 180$ $3m \angle RTS = 180$ $m \angle RTS = 60^{\circ}$ $m \angle RTS + m \angle R + m \angle S = 180$ $60 + m \angle R + 43 = 180$ $m \angle R = 77^{\circ}$ 6. $\overline{JL} \cong \overline{XZ}$ 7. $\angle Y \cong \angle K$ 8. $\angle L \cong \angle Z$ 9. $\overline{YZ} \cong \overline{KL}$

10.	Statements	Reasons
	1. <i>T</i> is mdpt. of \overline{PR} and \overline{SQ} .	1. Given
	2. $\overline{PT} \cong \overline{RT}, \ \overline{ST} \cong \overline{QT}$	2. Def. of mdpt.
	3. $\angle PTS \cong \angle RTQ$	3. Vert. 🛦 Thm.
	4. $\triangle PTS \cong \triangle RTQ$	4. SAS Steps 2, 3

11.	Statements	Reasons
	1. $\angle H \cong \angle K$	1. Given
	2. <i>GJ</i> bisects ∠ <i>HGK</i> .	2. Given
	3. ∠HGJ \cong ∠KGJ	3. Def. of ∠ bisector
	4. $\overline{JG} \cong \overline{JG}$	4. Reflex. Prop. of \cong
	5. $△$ <i>HGJ</i> \cong $△$ <i>KGJ</i>	5. AAS Steps 1, 3, 4

12.	Statements	Reasons
	1. $\overline{AB} \perp \overline{AC}, \ \overline{DC} \perp \overline{DB}$	1. Given
	2. ∠ <i>BAC</i> , ∠ <i>CDB</i> are rt. $▲$.	2. Def. of ⊥
	3. $\triangle ABC$ and $\triangle DCB$ are rt. \triangle .	3. Def. of rt. \triangle
	4. $\overline{AB} \cong \overline{DC}$	4. Given
	5. $\overline{BC} \cong \overline{CB}$	5. Reflex. Prop. of \cong
	6. $\triangle ABC \cong \triangle DCB$	6. HL Steps 5, 4

13.	Statements	Reasons
	1. <i>PQ</i> ∥ <i>SR</i>	1. Given
	2. ∠QPR \cong ∠SRP	2. Alt. Int. 🛦 Thm.
	3. $\angle S \cong \angle Q$	3. Given
	4. $\overline{PR} \cong \overline{RP}$	4. Reflex. Prop. of \cong
	5. $\triangle QPR \cong \triangle SRP$	5. AAS Steps 2, 3, 4
	6. ∠ <i>SPR</i> \cong ∠ <i>QRP</i>	6. CPCTC
	7. <u>PS</u> ∥ <u>QR</u>	7. Conv. of Alt. Int. 🔬



15. Use coords. *A*(0, 0), *B*(*a*, 0), *C*(*a*, *a*), and *D*(0, *a*). By Dist. Formula. $AC = \sqrt{(a-0)^2 + (a-0)^2} = a\sqrt{2}$, and $BD = \sqrt{(0-a)^2 + (a-0)^2} = a\sqrt{2}$. Since AC = BD, $\overline{AC} \cong \overline{BD}$ by def. of \cong . **16.** Think: By Equilat. \triangle Thm., $m \angle F = m \angle G = m \angle H$. $3m\angle G = 180$ 3(5 - 11y) = 1805 - 11y = 60-11y = 55v = -5**17.** Think: Use $\triangle \angle$ Sum and Isosc. \triangle Thms. $m \angle P + m \angle Q + m \angle PRQ = 180$ $2(56) + m \angle PRQ = 180$ $m \angle PRQ = 68^{\circ}$ By Vert. \angle and Isosc. \triangle Thms., $m \angle T = m \angle SRT = m \angle PRQ = 68^{\circ}$. Using $\Delta \angle$ Sum and Isosc. Thms. $m \angle S + m \angle T + m \angle SRT = 180$ $m \angle S + 2(68) = 180$ $m \angle S = 44^{\circ}$ **18.** It is given that $\triangle ABC$ is isosc. with coords. A(2a, 0), B(0, 2b), and C(-2a, 0). D is mdpt. of \overline{AC} , and E is mdpt. pf AB. By Mdpt. Formula, coords. of $D \operatorname{are}\left(\frac{-2a+2a}{2}, 0\right) = (0, 0), \text{ and coords. of } E \operatorname{are}$ $\left(\frac{2a+0}{2}, \frac{0+2b}{2}\right) = (a, b)$. By Dist. Formula, $AE = \sqrt{(a-2a)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$, and $DE = \sqrt{(a-0)^2 + (b-0)^2} = \sqrt{a^2 + b^2}.$ Therefore, $\overline{AE} \cong \overline{DE}$ and $\triangle AED$ is isosc.

COLLEGE ENTRANCE EXAM PRACTICE, PAGE 289

1. C

 $m \angle EFG = m \angle DEF + m \angle EDF$ Therefore III is false. Also, since $m \angle EDF > 0$, I is true. II is true as marked in diagram.

2. H

```
By CPCTC,

m \angle A = m \angle C

2x + 14 = 3x - 15

29 = x

m \angle A + m \angle DBA + m \angle BDA = 180

(2x + 14) + 49 + m \angle BDA = 180

121 + m \angle BDA = 180

m \angle BDA = 59^{\circ}
```

3. D

Side lengths are $\sqrt{10}$, $5\sqrt{2}$, and $2\sqrt{5}$.

4. H

 $131^\circ + 49^\circ = 180^\circ (\text{supp. ∠s})$ $136^\circ + 44^\circ = 180^\circ (\text{supp. ∠s})$ y = 49 + 44 = 93 (Ext. ∠ Thm.) 5. D By Equi- $\angle \triangle$ Thm., $RS \cong ST$ RS = ST2x + 10 = 3x - 212 = x

Solutions Key

Problem Solving On Location

CHAPTER 2, PAGES 140–141

THE MYRTLE BEACH MARATHON, PAGE 140

- 1. Both given rates are equivalent to 7.8 mi/h; time to complete marathon: (7.8)(26) = 202.8 min $\approx 3\frac{1}{2}$ h.
- 2. There are 5 pts. with medical station and portable toilets: at 6 mi, 12 mi, 18 mi, 24 mi, and 26 mi.
- 3. Let x and y be distances from HQ to viewing stand and from viewing stand to 29th Ave. N. Given information: x + y = 3.25y, so x = 2.25y. From map,

1.7 + x + y = 4.33.25y = 2.6y = 0.8x = 2.25v= 2.25(0.8) = 1.8 mi

SOUTH CAROLINA'S WATERFALLS, PAGE 141

- **1.** Waterfalls < 100 ft with 1-way trail length \geq 1.5 mi: Mill Creek Falls or Yellow Branch Falls
- 2a. F; round-trip hike to Mill Creek Falls is > 4 mi, but falls are < 400 ft tall
- b. F; If you hike to Raven Cliff, then you have seen a waterfall that is \geq 200 ft tall.

c. T

3. Let height of middle falls be x. x + x + (x + 15) = 1203x = 105

$$x = 105$$

Heights are 35 ft, 35 ft, and 35 + 15 = 50 ft.

CHAPTER 4, PAGES 294–295

THE QUEEN'S CUP, PAGE 294

1. Think: Calculate new bearing at each change of direction. At A: $50^{\circ} + 43^{\circ} = 93^{\circ}$, so new bearing is S 43° E.

At C: $43^\circ + 62^\circ = 105^\circ$, so new bearing is N 62° E. At E: $62^{\circ} + 20^{\circ} = 82^{\circ}$, so new bearing is S 20° E.

- 2. Speed over first 49 mi is about 10 mi/h. So race distance (about 80 mi) should take about 8 h.
- **3.** Yes; there is enough information to find $m \angle MXY$ (101°). *MX* and *MY* are know, so a unique $\triangle MXY$ is determined by SAS.

THE AIR ZOO, PAGE 295

1. Think: 7-month data will give most reliable mean painting rate. Use proportions.

$$\frac{n}{28,800} = \frac{7}{18,327}$$
$$n = \frac{7}{18,327} (28,800) \approx 11 \text{ mo}$$

- **2.** $m \angle DGF = m \angle EFG = 29^{\circ}$ (Alt. Int. \angle) $m \angle EGF = m \angle DGF = 29^{\circ}$ (bisected \angle) $m \angle FEG = 180 - (29 + 29)$ $= 180 - 58 = 122^{\circ}$ $m \angle AEG = 180 - m \angle FEG = 58^{\circ}$
- 3. Think: Solve a Simpler Problem. From diagram, d + 150 = 1000, so d = 850 ft.

CHAPTER 6, PAGES 448–449

HANDMADE TILES, PAGE 448

- **1.** Height of tile is $h = \frac{1}{2}(4) = 2$ in.; base is b = 6 in.; overlap width is $x = 2\sqrt{3}$ in. Can cut mn tiles, for greatest m and n such that $mb + x \le 40$ and $nh \le 12$. So $m \le \frac{1}{6}(40 - 2\sqrt{3})$ ≈ 6.1 and $n \le \frac{12}{2} = 6$. Therefore m = n = 6, so (6)(6) = 36 tiles can be cut.
- 2. Inside boundary of rect. must be 25 in. by 49 in. Shorter bases of tiles meet at corners; so if 2m + 1tiles fit along 25-in. side, (m + 1)(1) + m(3) = 25

$$4m + 1 = 25$$

 $4m + 1 = 25$
 $4m = 24$
 $m = 6$
So 2(6) + 1 = 13 tiles fit along each 25-in. side.
Similarly, if $2n + 1$ tiles fit along 49-in. side,
 $(n + 1)(1) + n(3) = 49$
 $4n + 1 = 49$
 $4n = 48$
 $n = 12$
So 2(12) + 1 = 25 tiles fit along each 49-in. side.

S Total number of tiles = 2(13) + 2(25) = 76 tiles.

3. Let a and b be shorter and longer half-diagonal lengths, so 2a = b. Each \triangle formed by diags. is a rt. \triangle with sides *a*, 2*a*, and 7, such that $a^{2} + (2a)^{2} = 7^{2}$

$$a^{2} + (2a)^{2} = 7$$

 $5a^{2} = 49$
 $a^{2} = 9.8$
 $a = \sqrt{9.8}$
Diag. lengths are $2\sqrt{9.8} \approx 6.26$ cm and $4\sqrt{9.8} \approx 12.52$ cm.

THE MILLENNIUM FORCE ROLLER COASTER, **PAGE 449**

1.
$$\ell = 310 \sqrt{2} \approx 438.4 \text{ ft}$$
 2. $\ell = vt$
 $438.4 \approx 20t$
 $t \approx 22 \text{ s}$