23. \(x + \frac{1}{2} = -\frac{1}{5} \)
\(10x + 5 = -2 \)
\(10x = -7 \)
\(x = -\frac{7}{10} \)

24. \(-\frac{1}{2} = 3x - \frac{1}{3} \)
\(-3 = 18x - 2x \)
\(-3 = 16x \)
\(x = -\frac{3}{16} = x \)
Write an equation for costs with each calling card. Then "Let x represent..." ending with "Card B" and its equation.

Let x represent the number of minutes and y represent the total cost.

Card A: \(y = 0.05x + 0.50 \)
Card B: \(y = 0.08x + 0.20 \)

Step 2 Solve the system by using a table of values.

\[
\begin{array}{c|c|c}
\text{ } & y = 0.05x + 0.50 & \text{ } \\
\hline
5 & 0.75 & 5 \\
10 & 1.00 & 10 \\
15 & 1.25 & 15 \\
\end{array}
\quad \begin{array}{c|c|c}
\text{ } & y = 0.08x + 0.20 & \text{ } \\
\hline
5 & 0.60 & 5 \\
10 & 1.00 & 10 \\
15 & 1.40 & 15 \\
\end{array}
\]

So the cost is the same for each card at 10 min.

THINK AND DISCUSS

1. Graph the two equations on the same grid. If the lines intersect once, there is 1 solution; if they are parallel, there is no solution; if they coincide, there are infinitely many solutions.

2. A solution to a system is represented on a graph by a point of intersection, and parallel lines never intersect.

3.

<table>
<thead>
<tr>
<th>Exactly One Solution</th>
<th>Infinitely Many Solutions</th>
<th>No Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>(y = 2x + 1)</td>
<td>(y = 2x + 1)</td>
</tr>
<tr>
<td></td>
<td>(y = x + 2)</td>
<td>(y = 2x + 1)</td>
</tr>
<tr>
<td></td>
<td>(y = 2x + 1)</td>
<td>(y = 2x + 4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slopes</th>
<th>y-intercepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different</td>
<td>Either</td>
</tr>
<tr>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Same</td>
<td>Different</td>
</tr>
</tbody>
</table>

EXERCISES

GUIDED PRACTICE

1. inconsistent

2. \(2x - y = 3 \)

\[
\begin{array}{c|c|c|c|c|c|c|c}
2(3) - (3) & 3 & \frac{3}{3} & 3 & \checkmark \\
\end{array}
\]

Because the point is a solution of both equations, \((3, 3)\) is a solution of the system.

3. \(y - 4x = -7 \)

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
-3 & -4(1) & \frac{-7}{1} & \checkmark \\
\end{array}
\]

Because the point is not a solution of both equations, \((1, -3)\) is not a solution of the system.
10. \(y = -7x + 13 \)
 \[4y = -28x - 12 \]
 \[y = -7x - 3 \]
 inconsistent; no solution

11. \(2x - 3y = -15 \)
 \[3y = 2x + 15 \]
 \[y = \frac{2}{3}x + 5 \]
 consistent, dependent; infinite number of solutions

12. \(8y - 24x = 64 \)
 \[8y = 24x + 64 \]
 \[y = 3x + 8 \]
 \[9y + 45x = 72 \]
 \[4x + 4y = -16 \]
 \[9y = -45x + 72 \]
 \[4y = -4x - 16 \]
 \[y = -5x + 8 \]
 \[y = -x - 4 \]
 consistent, independent; one solution

13. \(2x + 2y = -10 \)
 \[2y = -2x - 10 \]
 \[y = -x - 5 \]
 consistent, dependent; infinite number of solutions

14. Step 1 Write an equation for draining rate for each tank. [then “Let x represent...” ending with the two equations]
 Let \(x \) represent the number of minutes, and let \(y \) represent the depth of the water.
 Tank A: \(y = -1x + 7 \)
 Tank B: \(y = -0.5x + 5 \)

Step 2 Solve the system by using a table of values.

\[
\begin{array}{c|c}
 x & y \\
 \hline
 1 & 6 \\
 2 & 5 \\
 3 & 4 \\
 4 & 3 \\
 5 & 2 \\
\end{array}
\]

\[
\begin{array}{c|c}
 x & y \\
 \hline
 1 & 4.5 \\
 2 & 4 \\
 3 & 3.5 \\
 4 & 3 \\
 5 & 2.5 \\
\end{array}
\]

So the two tanks have the same amount of water at 4 min.

PRACTICE AND PROBLEM SOLVING

15. \(x + y = 0 \)
 \[-2 + 2 = 0 \]
 \[0 = 0 \]
 \[\sqrt{42} \]
 \[\sqrt{2} \]
 Because the point is a solution of both equations, \((-2, 2)\) is a solution of the system.

16. \(2y - 6x = 8 \)
 \[2(-5) - 6(-3) = 8 \]
 \[\frac{4y = 8x + 4}{8} \]
 \[\frac{8(-3) = 4}{-20} \]
 \[\frac{-20}{-20} \]
 Because the point is a solution of both equations, \((-3, -5)\) is a solution of the system.

17. \(\frac{y = 2}{2} \)
 \[\frac{y + 8 = 6x}{(2) + 8 = 6(3)} \]
 \[\frac{10}{18, x} \]
 Because the point is not a solution of both equations, \((3, 2)\) is not a solution of the system.

18. \(y = 8x + 2 \)
 \[1 \]
 \[8(6) + 2 \]
 \[50 \]
 Because the point is not a solution of both equations, \((6, 1)\) is not a solution of the system.

19. \[2 + y = x \]
 \[x + y = 4 \]
 \[y = x - 2 \]
 \[y = -x + 4 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

 The solution to the system is \((3, 1)\).

20. \[4y - 2x = 4 \]
 \[10x - 5y = 10 \]
 \[y = \frac{1}{2}x + 1 \]
 \[y = 2x - 2 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

 The solution to the system is \((2, 2)\).

21. \[12x + 4y = -4 \]
 \[2x - y = 6 \]
 \[y = -3x - 1 \]
 \[y = 2x - 6 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>-4</td>
<td>1</td>
<td>-4</td>
</tr>
<tr>
<td>2</td>
<td>-7</td>
<td>2</td>
<td>-2</td>
</tr>
</tbody>
</table>

 The solution to the system is \((1, -4)\).

22. \[y = 10 - x \]
 \[3x - 3y = 0 \]
 \[y = -x + 10 \]
 \[y = x \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>15</td>
<td>-5</td>
<td>-5</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

 The solution to the system is \((5, 5)\).

23. \[-27y = -24x + 42 \]
 \[y = \frac{8x - 14}{9} \]
 \[9y = 8x - 14 \]
 \[y = \frac{8x - 14}{9} \]
 \[4y - 6x = 36 \]
 \[4y = 6x + 36 \]
 \[y = \frac{3x + 9}{2} \]
 consistent, dependent; infinite number of solutions

24. \[\frac{3}{2}x + 9 = 45 \]
 \[y = \frac{3}{2}x + 9 \]
 \[9y = 8x - 14 \]
 \[y = \frac{8x - 14}{9} \]
 \[4y = 6x + 36 \]
 \[y = \frac{3}{2}x + 9 \]
 consistent, dependent; infinite number of solutions
25. \(7y + 42x = 56\)
\[\begin{align*}
7y &= -42x + 56 \\
y &= -6x + 8
\end{align*} \]

26. \(3y = 2x\)
\[\begin{align*}
y &= \frac{2}{3}x
\end{align*} \]

27. Let \(x\) be the number of systems sold, and \(y\) be the total money earned.

Jamal: \(y = 100x + 2400\)
Wanda: \(y = 120x + 2200\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2600</td>
<td>2</td>
<td>2440</td>
</tr>
<tr>
<td>4</td>
<td>2800</td>
<td>4</td>
<td>2680</td>
</tr>
<tr>
<td>6</td>
<td>3000</td>
<td>6</td>
<td>2920</td>
</tr>
<tr>
<td>8</td>
<td>3200</td>
<td>8</td>
<td>3160</td>
</tr>
<tr>
<td>10</td>
<td>3400</td>
<td>10</td>
<td>3400</td>
</tr>
</tbody>
</table>

So they have to sell 10 systems to earn the same amount.

28. \(y - x = 2\)
\[\begin{align*}
\begin{array}{c|c|c|c|c}
 & 2x + y &= 8 \\
\hline
2(2) & 2x & 8 \\
\hline
2(4) & 2x & 8 \\
\hline
-2 & 2x & 8 \\
\hline
-2 & 2x & 8 \\
\hline
\end{array}
\end{align*} \]

Because the point is not a solution of both equations, \((4, 2)\) is not a solution of the system.

So \(y = -2x + 8\)
\[\begin{align*}
y &= -2(2) + 8 \\
y &= -4 + 8 \\
y &= 4
\end{align*} \]

29. \(3x + y = -1\)
\[\begin{align*}
3(-1) &+ (2) = -1 \\
8(-1) &+ 6 = -2 \\
-1 &- 1 \checkmark \\
-2 &- 2 \checkmark
\end{align*} \]

Because the point is a solution of both equations, \((-1, 2)\) is a solution of the system.

30. \(x + y = 9\)
\[\begin{align*}
x &= \frac{9}{9} \checkmark \\
4(2) &+ 4 = 7 \\
12 &+ 7 \checkmark
\end{align*} \]

Because the point is not a solution of both equations, \((7, 2)\) is not a solution of the system.

So \(y = -x + 9\)
\[\begin{align*}
y &= -8 + 9 \\
y &= 1
\end{align*} \]

Because the point is a solution of both equations, \((-1, 2)\) is a solution of the system.

31. \(3x + 4y = -9\)
\[\begin{align*}
3(0) &+ 4(6) = -9 \\
24 &- 9 \checkmark
\end{align*} \]

\((0, 6)\) is not a solution.

So \(y = -3x - 9\)
\[\begin{align*}
y &= -\frac{3}{4}x - \frac{9}{4} \\
\end{align*} \]

The solution is \((-3, 0)\).

32. Roberto: \(r = 15x + 12\)
Alexandra: \(a = 18x + 8\)

33. Lynn: \(l = -200x + 10,000\)
Miguel: \(m = 50x + 5000\)

34. Plan A: \(y = 0.4x + 15\)
Plan B: \(y = 0.25x + 30\)

c. 2 hours = 120 min

Plan A: \(y = 0.4(120) + 15 = 63\)
Plan B: \(y = 0.25(120) + 30 = 60\)

He should use plan B. It is $3.00 cheaper than plan A.
35. \[
\begin{align*}
\begin{cases}
y = -x + 6 \\
y = 2x - 3 \\
\end{cases}
\end{align*}
\]
consistent, independent
\[
\begin{align*}
-x + 6 &= 2x - 3 \\
-3x + 6 &= -3 \\
-3x &= -9 \\
3 &= x \\
\end{align*}
\]
The solution of the system is (3, 3).

36. \[
\begin{align*}
\begin{cases}
x = 2 \\
y = 3 \\
\end{cases}
\end{align*}
\]
consistent, independent
inconsistent; no solution
The solution to the system is (2, 3).

37. \[
\begin{align*}
\begin{cases}
y = 3x + 1 \\
y = 3x - 3 \\
\end{cases}
\end{align*}
\]
The solution of the system is \(\left(\frac{8}{3}, \frac{32}{3}\right)\).

38. (2, -3)
39. (-0.25, 4)
40. (6.444, 131)
41. (2.831, -30.403)

42a. Truck:
\[
\begin{align*}
\text{city: } 408 &= 24 \text{ mi/gal} \\
\text{city: } 364 &= 26 \text{ mi/gal} \\
hwy: 476 &= 28 \text{ mi/gal} \\
hwy: 490 &= 35 \text{ mi/gal} \\
\end{align*}
\]

b. Truck:
\[
\begin{align*}
\left(\frac{476}{60}\right) &= 7\frac{14}{15} \text{ h} \\
\left(\frac{490}{60}\right) &= 8\frac{1}{6} \text{ h}
\end{align*}
\]
The truck will have an empty tank after 7\(\frac{14}{15}\) h.
The truck must travel at 58\(\frac{2}{7}\) mi/h.
The car will have an empty tank after 8\(\frac{1}{6}\) h.

43. \[
2y = -x + 4 \\
y = -\frac{1}{2}x + 2
\]
infinite number of solutions \(\rightarrow\) any multiple of the original equation. For example,
\[
2y = -x + 4 \\
4y = -2x + 8 \ldots \text{etc.}
\]
no solution \(\rightarrow\) any equation with the same slope as \(\frac{-1}{2}\) but a different \(y\)-intercept. For example,
\[
y = -\frac{1}{2}x - 6
\]
one solution \(\rightarrow\) any equation with a different slope. For example,
\[
y = -\frac{3}{4}x + 2
\]

44. Possible answer: (3.5, 0.25)

45. Consistent, independent; one solution. The solution is the \(y\)-intercept since it is the same point for each line.

46. Possible answer: One hot-air balloon starts at 120 ft and rises quickly. The other balloon starts at 200 ft and rises slowly. After 4 min, the balloons are at the same height, 280 ft, as represented by the point of intersection.

TEST PREP

47. D
48. G
49. B
50. \[
\begin{align*}
x + y &= 8 \\
y &= 4x
\end{align*}
\]
So \(y = x + 8\) and \(y = 4x\).
\[
x + 8 &= 4x \\
8 &= 3x \\
\frac{8}{3} &= x \\
y &= 4\left(\frac{8}{3}\right)
\]
The solution of the system is \(\left(\frac{8}{3}, \frac{32}{3}\right)\).

Three times the value of \(y\) is 32.

CHALLENGE AND EXTEND

51. \[
55x + 100 = 20x + 600 \\
x = 20 \left(\frac{100}{7}\right) + 600
\]
55x + 100 = 600
35x = 500
\[x = \frac{500}{35} = \frac{2000}{7} + \frac{4200}{7}\]
\[x = \frac{100}{7} = \frac{6200}{7}\]
The solution of the system is \(\left(\frac{100}{7}, \frac{6200}{7}\right)\).

52. \[
\begin{align*}
5y &= -20x + 135 \\
y &= -4x + 27 \\
y &= -4x + 27
\end{align*}
\]
\[y = -4\left(\frac{5}{46}\right) + 27
\]
So \(y = -4x + 27\) and \(y = 20\)
\[y = \frac{20}{46} + 27 \ldots \text{etc.}
\]
\[y = -46x + 32 = -4x + 27
\]
\[-46x + 32 = 27 \ldots \text{etc.}
\]
\[-46x = -5
\]
\[x = \frac{5}{46}
\]
The solution of the system is \(\left(\frac{5}{46}, \frac{611}{23}\right)\).

53. \[
18y = -9x + 126 \\
14y = -7x + 98 \\
y = -\frac{1}{2}x + 7
\]
infinite number of solutions

54. \[
0.25x - y = 2.25 \\
y = 0.75x + 3.75
\]
So \(y = 0.75x + 3.75\) and \(y = 0.25x - 2.25\).
\[0.25x - 2.25 = 0.75x + 3.75
\]
\[-0.5x = -2.25 = 3.75
\]
\[-0.5x = 6
\]
\[x = -12
\]
\[y = 0.25x - 2.25
\]
\[y = 0.25(-12) - 2.25
\]
\[y = -3 - 2.25
\]
\[y = -5.25
\]
The solution of the system is \((-12, -5.25)\).

55. The solution is meaningless in the real world. Time and cost cannot be negative. The costs for the 2 products will never be equal.
56a. Brad: \(y = -12x + 70 \)
Cliff: \(y = -15x + 100 \)
\(-12x + 70 = -15x + 100\)
\(3x + 70 = 100\)
\(3x = 30\)
\(x = 10\) days

b. Brad: \(y = -12(10) + 70 \)
y = 50 lb
Cliff: \(y = -15(10) + 100 \)
y = 50 lb
No; they will both run out of food before that time.

c. Brad: \(y = -12(4) + 70 + 100 \)
y = 122 lb
Cliff: \(y = -15(4) + 100 + 100 \)
y = 140 lb
On day 10 (6 days later) they have used up:
Brad: \(-12(10) = -72\) lb
\(122 - 72 = 50\) lb
Cliff: \(-15(6) = -90\) lb
\(140 - 90 = 50\) lb
The answer would make sense. Each farmer would have 50 lb of food on day 10.

3-2 USING ALGEBRAIC METHODS TO SOLVE LINEAR SYSTEMS, PAGES 190–197

CHECK IT OUT!

1a. \[
\begin{align*}
x + 2y &= -25 \\
-12x - 7y &= 19
\end{align*}
\]
Step 1 Solve one equation for one variable. The first equation is already solved for \(x\):
\(x = \frac{6}{8}\)
\(x = \frac{3}{4}\)
Step 2 Substitute the \(x\)-value into one of the original equations to solve for \(y\):
\(y = -2\cdot\frac{3}{4} + 2\)
\(y = -4\)
The solution is the ordered pair \((3, -4)\).

b. \[
\begin{align*}
x + 2y &= -9 \\
y &= -2x + 2
\end{align*}
\]
Step 1 Solve one equation for one variable. The first equation is already solved for \(y\):
\(y = -2x + 2\)
Step 2 Substitute the \(x\)-value into the other equation.
\(5x + 6y = -9\)
\(5x + 6(-2x + 2) = -9\)
\(5x - 12x + 12 = -9\)
\(-7x + 12 = -9\)
\(-7x = -21\)
\(x = 3\)

2a. \[
\begin{align*}
4x + 7y &= -25 \\
-12x - 7y &= 19
\end{align*}
\]
Step 1 Find the value of one variable.
\(-8x = -6\)
\(x = \frac{6}{8}\)
\(x = \frac{3}{4}\)
Step 2 Substitute the \(x\)-value into one of the original equations to solve for \(y\):
\(4\cdot\frac{3}{4} + 7y = -25\)
\(3 + 7y = -25\)
\(7y = -28\)
\(y = -4\)
The solution is the ordered pair \(\left(\frac{3}{4}, -4\right)\).

b. \[
\begin{align*}
x + 2y &= -9 \\
y &= -2x + 2
\end{align*}
\]
Step 1 To eliminate \(y\), multiply both sides of the first equation by 5 and both sides of the second equation by 3.
\(5(5x - 3y) = 5(42)\)
\(3(8x + 5y) = 3(28)\)
Add to eliminate \(y\):
\(25x = 210\)
\(24x = 84\)
\(49x = 294\)
\(x = 6\)
Step 2 Substitute the \(x\)-value into one of the original equations to solve for \(y\):
\(5(6) - 3y = 42\)
\(-30 = 3y + 42\)
\(3y = -52\)
\(y = -17\)
The solution is the ordered pair \((6, -17)\).
3a. \(56x + 8y = -32\)
\[
\begin{align*}
56x + 8y &= -32 \\
8x + y &= -4 \\
7x + y &= -4
\end{align*}
\]
Since \(7x + y = -4\), the system is consistent, dependent, and has an infinite number of solutions.

4. Let \(x\) represent amount of Sumatra beans. Let \(y\) represent amount of Kona beans.
\[
\begin{align*}
x + y &= 50 \\
5x + 13y &= 10(50) \\
5x + 13y &= 500
\end{align*}
\]
5. \(x = 12\), the solution is the ordered pair \((5, 12)\).

EXERCISES

GUIDED PRACTICE

1. elimination

2. **Step 1** Solve one equation for one variable. The second equation is already solved for \(y\): \(y = x + 7\).
 Step 2 Substitute the expression into the other equation.
 \[
 \begin{align*}
x + y &= 17 \\
x + (x + 7) &= 17 \\
2x + 7 &= 17 \\
2x &= 10 \\
x &= 5
 \end{align*}
 \]
 Step 3 Substitute the \(x\)-value into one of the original equations to solve for \(y\).
 \[
 \begin{align*}
y &= x + 7 \\
y &= 5 + 7 \\
y &= 12
 \end{align*}
 \]
The solution is the ordered pair \((5, 12)\).

3. **Step 1** Solve one equation for one variable. The first equation is already solved for \(y\): \(y = x - 19\).
 Step 2 Substitute the expression into the other equation.
 \[
 \begin{align*}
x - y &= 27 \\
x - (x - 19) &= 27 \\
2x - x + 19 &= 27 \\
x &= 8
 \end{align*}
 \]
 Step 3 Substitute the \(x\)-value into one of the original equations to solve for \(y\).
 \[
 \begin{align*}
y &= x - 19 \\
y &= 8 - 19 \\
y &= -11
 \end{align*}
 \]
The solution is the ordered pair \((8, -11)\).

4. **Step 1** Solve one equation for one variable. \(2x - y = 2\)
 \[
 \begin{align*}
y &= 2x - 2
 \end{align*}
 \]
 Step 2 Substitute the expression into the other equation.
 \[
 \begin{align*}
3x - 2y &= 11 \\
3x - 2(2x - 2) &= 11 \\
3x - 4x + 4 &= 11 \\
-x &= 7 \\
x &= -7
 \end{align*}
 \]
 Step 3 Substitute the \(x\)-value into one of the original equations to solve for \(y\).
 \[
 \begin{align*}
y &= 2x - 2 \\
y &= (2(-7)) - 2 \\
y &= -14 - 2 \\
y &= -16
 \end{align*}
 \]
The solution is the ordered pair \((-7, -16)\).

5. **Step 1** Solve one equation for one variable. \(y = 3x + 5\)
 \[
 \begin{align*}
y &= 3(-3y - 5) + 5 \\
y &= -9y - 15 + 5 \\
10y &= -10 \\
y &= -1
 \end{align*}
 \]
 Step 3 Substitute the \(y\)-value into one of the original equations to solve for \(x\).
 \[
 \begin{align*}
y &= 3x + 5 \\
-1 &= 3x + 5 \\
6 &= 3x \\
x &= 2
 \end{align*}
 \]
The solution is the ordered pair \((-2, -1)\).
6. Step 1 Find the value
of one variable. Add to eliminate y.
\[2x + y = 12 \quad \text{(1)}\]
\[-5x - y = -33 \quad \text{(2)}\]
\[-3x = -21\]
x = 7
Step 2 Substitute the x-value into one of the original equations to solve for y.
\[2(7) + y = 12\]
y = -2
The solution is the ordered pair (7, -2).

8. Step 1 To eliminate y, multiply both sides of the second equation by 2.
\[2(5x - 3y) = 2(88) \quad \text{(2)}\]
Add to eliminate y.
\[2x + 6y = -8 \quad \text{(1)}\]
\[10x - 6y = 176 \quad \text{(2)}\]
\[12x = 168\]
x = 14
Step 2 Substitute the x-value into one of the original equations to solve for y.
\[2(14) + 6y = -8\]
6y = -36
y = -6
The solution is the ordered pair (14, -6).

10. 5x - y = -3
y = 5x + 3
15x - 3(5x + 3) = -9
15x - 15x - 9 = -9
-9 = -9
consistent, dependent, infinite number of solutions

12. 2x + 3y = -24
3y = -2x - 24
y = -\(\frac{2}{3}x - 8\)
8x + 12 \(\left(\frac{2}{3}x - 8\right)\) = 60
8x + \(\frac{2}{3}x - 8\) = 96
8x - 8x - 96 = 60
-96 = 60
inconsistent, no solution

7. Step 1 Find the value
of one variable. Add to eliminate x.
\[2x - 5y = -5 \quad \text{(1)}\]
\[-2x + 8y = -58 \quad \text{(2)}\]
\[3y = -63\]
y = -21
Step 2 Substitute the y-value into one of the original equations to solve for x.
\[2x - 5(-21) = -5\]
x = -5
The solution is the ordered pair (-55, -21)

9. Step 1 To eliminate x, multiply both sides of the first equation by 4.
\[4 \left(\frac{1}{2}x + y\right) = 4(4) \quad \text{(1)}\]
Add to eliminate x.
\[2x + 4y = 16 \quad \text{(1)}\]
\[-2x - 2y = -6 \quad \text{(2)}\]
\[2y = 10\]
y = 5
Step 2 Substitute the y-value into one of the original equations to solve for x.
\[2x - 2(5) = -6\]
x = -2
The solution is the ordered pair (-2, 5).

11. \[x = 2y - 8\]
\[4(2y - 8) = 8y - 56\]
\[8y \times 2 - 32 = 8y - 56\]
\[-32 = -56 x\]
inconsistent, no solution

13. \[x - \frac{1}{3}y = -2\]
\[-\frac{1}{3}y = -x - 2\]
y = 3x + 6
6x - 2(3x + 6) = -12
6x - 6x - 12 = -12
\[-12 = -12\]
consistent, dependent, infinite number of solutions

14. Let x be the amount of 85% ethanol, and y be the amount of 25% ethanol.
\[x + y = 20\]
\[0.85x + 0.25y = 20(0.5) \quad \text{(2)}\]
x + y = 20
\[0.85x + 0.25y = 10\]
x + y = 20
\[0.85x + 0.25(20 - x) = 10\]
\[0.85x + 5 - 0.25x = 10\]
\[0.6x = 5\]
x = 8 \(\frac{1}{3}\)
y = 20 - \left(8 \frac{1}{3}\right)
y = 11 \(\frac{2}{3}\)

Denise needs 8 \(\frac{1}{3}\) gal of 85% ethanol fuel and 11 \(\frac{2}{3}\) gal of 25% ethanol fuel.

PRACTICE AND PROBLEM SOLVING

15. Step 1 Solve one equation for one variable. The first equation is already solved for x:
\[x = -4y\]
Step 2 Substitute the expression into the other equation.
\[2x + 6y = -3\]
\[2(-4y) + 6y = -3\]
\[-8y + 6y = -3\]
\[-2y = -3\]
y = 3 \(\frac{2}{3}\)
Step 3 Substitute the x-value into one of the original equations to solve for y.
\[x = -4y\]
x = -4 \(\frac{3}{2}\)
y = -6 + 21
y = 15
The solution is the ordered pair \(\left(-6, \frac{3}{2}\right)\).

16. Step 1 Solve one equation for one variable.
\[12x + y = 21\]
y = -12x + 21
Step 2 Substitute the expression into the other equation.
\[18x - 3(-12x + 21) = -36\]
\[18x + 36x - 63 = -36\]
\[54x = 27\]
x = \(\frac{1}{2}\)
Step 3 Substitute the x-value into one of the original equations to solve for y.
y = -12x + 21
y = -12(\(\frac{1}{2}\)) + 21
y = -6 + 21
y = -6 + 21
y = 15
The solution is the ordered pair \(\left(\frac{1}{2}, 15\right)\).
17. **Step 1** Solve one equation for one variable. The first equation is already solved for y.

$y = -4x$.

Step 2 Substitute the expression into the other equation.

$32x + 21y = 29$
$32x + 21(4x) = 29$
$32x + 84x = 29$
$116x = 29$

$x = \frac{29}{116}$

$x = \frac{1}{4}$

Step 3 Substitute the x-value into one of the original equations to solve for y.

$y = 4 \left(\frac{1}{4} \right)$

$y = 1$

The solution is the ordered pair $\left(\frac{1}{4}, 1 \right)$.

19. **Step 1** To eliminate x, multiply both sides of the second equation by -1.

$-1(4x - 5y) = -1(2)$

$-4x + 9y = 26$

Step 2 Substitute the y-value into one of the original equations to solve for x.

$4x - 9(6) = 26$
$4x + 54 = 26$
$4x = -28$

$x = -7$

The solution is the ordered pair $(-7, -6)$.

20. **Step 1** To eliminate x, multiply both sides of the first equation by 5 and both sides of the second equation by 6.

$5(6x - 3y) = 5(-6)$
$6(-5x + 7y) = 6(41)$

Step 2 Substitute the y-value into one of the original equations to solve for x.

$6x - 3(8) = -6$
$6x - 24 = -6$
$6x = 18$

$x = 3$

The solution is the ordered pair $(3, 8)$.

21. **Step 1** To eliminate y, multiply both sides of the first equation by 8 and both sides of the second equation by 3.

$8(12x - 3y) = 8(-15)$
$3(8x + 8y) = 3(-58)$

Add to eliminate y.

$96x - 24y = -120$
$24x + 24y = -174$

$x = -2.45$

Step 2 Substitute the x-value into one of the original equations to solve for y.

$8(-2.45) + 8y = -58$
$-19.6 + 8y = -58$

$8y = -38.4$

$y = -4.8$

The solution is the ordered pair $(-2.45, -4.8)$.

22. **Step 1** To eliminate y, multiply both sides of the first equation by 2.

$-2(3x + y) = -2(7)$

$3x = 12\left(\frac{1}{4}x - \frac{1}{6} \right) + 72$

Add to eliminate y.

$-6x - 2y = -14$
$-3x + 2y = 11$

$-9x = 3$

$x = \frac{1}{3}$

Step 2 Substitute the x-value into one of the original equations to solve for y.

$3\left(\frac{1}{3} \right) + y = 7$
$1 + y = 7$

$y = 6$

The solution is the ordered pair $\left(\frac{1}{3}, 6 \right)$.

23. $4y = x - 24$

$y = \frac{1}{4}x - 6$

$-2(3x + y) = -2(7)$

$3x = 12\left(\frac{1}{4}x - \frac{1}{6} \right) + 72$

Add to eliminate y.

$-6x - 2y = -14$
$-3x + 2y = 11$

$-9x = 3$

$x = \frac{1}{3}$

24. $10x - 2y = 22$

$2y = 10x - 22$
$y = 5x - 11$

$5(5x - 11) - 25x = 65$
$25x - 55 - 25x = 65$

$x = -55 = 65 \times x$

inconsistent; no solution

$\frac{3}{4}x + 64 - 6x = 64$

$\frac{3}{4}x + 64 - 6x = 64$

$x = 64$

consistent, dependent; infinite number of solutions
26. \(-x + \frac{3}{4}y = 4\)
\[3y = x + 4\]
\[y = \frac{4}{3}x + \frac{16}{3}\]
\[8x - 6\left(\frac{4}{3}x + \frac{16}{3}\right) = -8\]
\[8x - 2\frac{2}{3}x - 22\frac{2}{3} = -8\]
\[8x - 8x - 32 = -8\]
\[-32 = -8x\]

inconsistent; no solution

27. **Step 1** Solve one equation for one variable. The first equation is already solved for \(x\):
\[x = 3y + 3\]

Step 2 Substitute the expression into the other equation.
\[y + 3x = -21\]
\[y + 3(3y + 3) = -21\]
\[y + 9y + 9 = -21\]
\[9y + 9 = -21\]
\[10y = -30\]
\[y = -3\]

Step 3 Substitute the \(y\)-value into the original equation to solve for \(x\).
\[x + 800 = 1200\]
\[x = 400\]

printer A produces 400 copies; printer B produces 800 copies

28. **Step 1** Solve one equation for one variable. The first equation is already solved for \(y\):
\[y = -2x + 14\]

Step 2 Substitute the expression into the other equation.
\[1.5x - 3.5y = 2\]
\[1.5x - 3.5(-2x + 14) = 2\]
\[1.5x + 7x - 49 = 2\]
\[8.5x = 51\]
\[x = 6\]

Step 3 Substitute the \(x\)-value into one of the original equations to solve for \(y\).
\[y = -2x + 14\]
\[y = 31\]
\[y = 31\]

The solution is the ordered pair \((-6, -3)\).

29. **Step 1** Solve one equation for one variable. The first equation is already solved for \(y\):
\[y = -2x + 14\]

Step 2 Substitute the expression into the other equation.
\[1.5x - 3.5y = 2\]
\[1.5x - 3.5(-2x + 14) = 2\]
\[1.5x + 7x - 49 = 2\]
\[8.5x = 51\]
\[x = 6\]

Step 3 Substitute the \(x\)-value into one of the original equations to solve for \(y\).
\[y = -2x + 14\]
\[y = -88\]

The solution is the ordered pair \((6, 2)\).

30. **Step 1** Solve one equation for one variable. The first equation is already solved for \(y\):
\[y = x + 8\]

Step 2 Substitute the expression into the other equation.
\[\frac{4}{5}y - 3x = \frac{1}{5}\]
\[y = x + 8\]
\[\frac{4}{5}(x + 8) - 3x = \frac{1}{5}\]
\[\frac{4}{5}x + \frac{32}{5} - 3x = \frac{1}{5}\]
\[4x + 32 - 15x = 1\]
\[-11x = -31\]
\[x = \frac{31}{11}\]
\[= 2\frac{9}{11}\]

Step 3 Substitute the \(x\)-value into one of the original equations to solve for \(y\).
\[y = -2x + 14\]
\[y = 31\]

The solution is the ordered pair \((2\frac{9}{11}, 10\frac{9}{11})\).

31. **Step 1** Solve one equation for one variable. The first equation is already solved for \(y\):
\[y = x + 8\]

Step 2 Substitute the expression into the other equation.
\[\frac{4}{5}y - 3x = \frac{1}{5}\]
\[y = x + 8\]
\[\frac{4}{5}(x + 8) - 3x = \frac{1}{5}\]
\[\frac{4}{5}x + \frac{32}{5} - 3x = \frac{1}{5}\]
\[4x + 32 - 15x = 1\]
\[-11x = -31\]
\[x = \frac{31}{11}\]
\[= 2\frac{9}{11}\]

Step 3 Substitute the \(x\)-value into one of the original equations to solve for \(y\).
\[y = -2x + 14\]
\[y = 31\]

The solution is the ordered pair \((6, 2)\).

32a. Let \(x\) be the time spent mowing the lawn, and \(y\) be the time spent raking leaves.
\[x + y = 3\]
\[325x + 275y = 885\]

b. \[x + y = 3\]
\[x = 3 - y\]
\[325(3 - y) + 275y = 885\]
\[975 - 325y + 275y = 885\]
\[-50y = -90\]
\[y = 1.8\]
\[x + (1.8) = 3\]
\[x = 1.2\]

He spent 1.2 h mowing the lawn and 1.8 h raking leaves.

33a. 22 ways; 21 dimes, 20 dimes and 2 nickels, ..., 1 dime and 40 nickels, 42 nickels

b. The total number of coins increases because every dime is replaced by 2 nickels.
34. The error is in solution A. The equation \(y = 2 + x \) must be substituted into the other equation, not the equation in which it was solved for \(y \).

35a. 500 \(\times \) 0.533 = 266.5 mi

b. \(d = st \)
\[
0.533 = 14.94s
\]
\[
s = 0.035676 mi/s \times 60 s/min \times 60 min/h
\]
\[
s = 128.43 mi/h
\]
\[
y = 128.43x
\]
c. Lead car: 266.5 = 128.43x
\[
x = 2.0751 h
\]
2nd car: 266.5 = 125x
\[
x = 2.132 h
\]
\[
2.132 - 2.0751 = 0.0569 h
\]
\[
125 mi/h \times 0.0569 h = 7.12 mi
\]
approximately 7.1 mi

36a. Malcolm: \(y = 45x + 300 \)
Owen: \(y = 60x + 325 \)
\[
45x + 300 = 60x + 325
\]
\[
-15x + 300 = 325
\]
\[
-15x = 25
\]
\[
x = -\frac{5}{3} = -1\frac{2}{3}
\]
b. Possible answer: No; the solution is not reasonable since the number of customers cannot be a negative fraction.

37. Let \(x \) be the cost of student tickets, and \(y \) be the cost of adult tickets.
\[
\begin{align*}
16x + 3y &= 110.50 \quad \text{(1)} \\
12x + 4y &= 96 \quad \text{(2)}
\end{align*}
\]
Step 1 To eliminate \(y \), multiply both sides of the first equation by 4 and both sides of the second equation by -3.
\[
4(16x + 3y) = 4(110.50) \quad \text{(1)}
\]
\[
-3(12x + 4y) = -3(96) \quad \text{(2)}
\]
Add to eliminate \(y \).
\[
6x + 12y = 442 \quad \text{(1)}
\]
\[
36x + 12y = 288 \quad \text{(2)}
\]
\[
\begin{align*}
28x &= 154 \\
x &= 5.5
\end{align*}
\]
Step 2 Substitute the \(x \)-value into one of the original equations to solve for \(y \).
\[
16(5.5) + 3y = 110.50
\]
\[
88 + 3y = 110.50
\]
\[
3y = 22.5
\]
\[
y = 7.5
\]
A student ticket costs $5.50, and an adult ticket costs $7.50.

38a. Step 1 To eliminate \(y \), multiply both sides of the second equation by 2.
\[
2(6x + 3y) = 2(24) \quad \text{(2)}
\]
Add to eliminate \(y \).
\[
3x - 6y = -13 \quad \text{(1)}
\]
\[
12x + 6y = 48 \quad \text{(2)}
\]
\[
15x + = 35 \quad \text{(1)} + 2(\quad \text{(2)}
\]
\[
x = \frac{7}{3} = 2\frac{1}{3}
\]
Step 2 Substitute the \(x \)-value into one of the original equations to solve for \(y \).
\[
3\left(\frac{7}{3}\right) - 6y = -13
\]
\[
7 - 6y = -13
\]
\[
y = 10 \quad \frac{3}{3}
\]
The solution is incorrect. The correct solution is \(\left(\frac{21}{3}, -3\frac{1}{3}\right) \).

b. Solving by graphing is best for equations that intersect at whole-number values or values that are clear on a graph. Solving algebraically is best for solutions that are not easy to read on a graph. When solving algebraically, if a variable is isolated, use substitution. Otherwise use elimination.

39. Possible answer: Solve both equations for \(y \). The slopes and the \(y \)-intercepts should be the same.

TEST PREP

40. D

41. G; Let \(x \) represent the number of small tables, and let \(y \) represent the number of small tables.
\[
\begin{align*}
12x + 8y &= 100 \quad \text{(1)} \\
50x + 25y &= 350 \quad \text{(2)}
\end{align*}
\]
Step 1 To eliminate \(y \), divide both sides of the first equation by -4 and both sides of the second equation by 12.5.
\[
\frac{12x + 8y}{-4} = \frac{100}{-4} \quad \text{(1)}
\]
\[
\frac{50x + 25y}{12.5} = \frac{350}{12.5} \quad \text{(2)}
\]
Add to eliminate \(y \).
\[
-3x - 2y = -25 \quad \text{(1)}
\]
\[
4x + 2y = 28 \quad \text{(2)}
\]
\[
x = \frac{3}{3}
\]
Step 2 Substitute the \(x \)-value into one of the original equations to solve for \(y \).
\[
-3(3) - 2y = -25
\]
\[
-9 - 2y = -25
\]
\[
-2y = -16
\]
\[
y = 8
\]
To seat 100 guests, they need to rent 3 large tables and 8 small tables.
42. A. \[\begin{align*}
4x + y &= 7 \\
x - y &= -3 \\
x + y &= 7 \\
y &= -x + 7 \\
x - (-x + 7) &= -3 \\
2x - 7 &= -3 \\
2x &= 4 \\
x &= 2 \\
x + y &= 7 \\
(2) + y &= 7 \\
y &= 5 \\
\text{solution: } (2, 5)
\end{align*} \]

43. \[\begin{align*}
x - 4y &= 6 \\
y &= -4x + 7 \\
x - 4(-4x + 7) &= 6 \\
17x - 28 &= 6 \\
17x &= 34 \\
x &= 2 \\
y &= -4(2) + 7 \\
y &= -1 \\
\text{solution (2, -1)} \\
\text{The system is independent and consistent.}
\end{align*} \]

44. H

CHALLENGE AND EXTEND

45. Possible answer:
\[y = -\frac{3}{2}x \]

46. Eliminate x by adding:
\[y - x = 4 \quad \text{①} \\
y + x = 2 \quad \text{②} \\
2y = 6 \quad \text{③} + \text{②} \\
y = 3 \\
(3) - 1 = -2x \\
\begin{align*}
2 &= -2x \\
-1 &= x \\
\end{align*}

solution (-1, 3)

Possible answer: Use the eliminate method on the first and third equations to solve for y. Then substitute the y-value back into another equation to find x.

47a. \[\begin{align*}
p &= 5 + 2q \\
p &= 5 + 2(100 - 4p) \\
p &= 5 + 200 - 8p \\
p &= 205 \\
p &= 9 \\
p &= 90 \quad \text{(227,8)} \\
p &= 90 \quad \text{9} \\
q &= 100 - 4p \\
q &= 100 - \frac{820}{9} \\
q &= 900 - \frac{820}{9} \\
q &= 80 \quad \text{(291,8)} \\
q &= 80 \quad \text{9} \\
\text{solution: } (227,8) \quad \text{9}
\end{align*} \]

47b. \[\begin{align*}
p &= 3 + 0.5q \\
p &= 100 - 4p \\
p &= 3 + 0.5(100 - 4p) \\
p &= 3 + 50 - 2p \\
3p &= 53 \\
p &= 53 \quad \text{(3)} \quad \text{(3)} \\
q &= 100 - 4p \\
q &= 100 - \frac{212}{3} \\
q &= 300 - \frac{212}{3} \\
q &= \frac{88}{3} = 29 \frac{1}{3} \\
\text{solution: } \left(17 \frac{2}{3}, 29 \frac{1}{3}\right)
\end{align*} \]

SPIRAL REVIEW

48. \[\begin{align*}
b^2(2b + 4) + b^5 &= -2b^2 - 4b^2 + b^5 \\
&= -2b^2 - 4b^2 + b^5 \\
&= -2(-1)^3 - 4(-1)^2 + (-1)^5 \\
&= 28b^2 + 1 \\
&= -2(-1) - 4(1) + (-1) \\
&= 2 - 4 - 1 \\
&= -3 \\
&= 252 + 1 \\
&= 253
\end{align*} \]

49. \[\begin{align*}
c^2 + 1 + (5c)^2 &= 3c^2 + 1 + 25c^2 \\
&= 28c^2 + 1 \\
&= 28(3)^2 + 1 \\
&= 28(9) + 1 \\
&= 252 + 1 \\
&= 253
\end{align*} \]

50. \[\begin{align*}
\frac{20 - 2x^2}{x} &= \frac{20}{x} - 2x \\
\text{②} &= \frac{20}{x} - 2(-2) \\
&= -10 + 4 \\
&= -6 \\
\text{③} &= \frac{2}{9} \\
\text{④} &= \frac{2}{9y^2} \\
\text{⑤} &= \frac{2}{9(-3)^2} \\
&= \frac{2}{81}
\end{align*} \]

51. \[\begin{align*}
y^3 &= \frac{2y}{9} \\
2y^2 &= \frac{2}{9} \\
9y^2 &= 2 \\
9(-3)^2 &= \frac{2}{81}
\end{align*} \]

52. \[\begin{align*}
m &= \frac{4 - 2}{6 - 2} \\
f(x) - 2 &= \frac{1}{2}(x - 2) \\
m &= \frac{2}{4} \\
f(x) - 2 &= \frac{1}{2}x - 1 \\
m &= \frac{1}{2} \\
f(x) &= \frac{1}{2}x + 1
\end{align*} \]

53. \[\begin{align*}
m &= \frac{-5 - (-2)}{3 - 1} \\
f(x) - (-2) &= -\frac{3}{2}(x - 1) \\
m &= \frac{-3}{2} \\
f(x) + 2 &= -\frac{3}{2}x + \frac{3}{2} \\
m &= \frac{-3}{2} \\
f(x) &= -\frac{3}{2}x - \frac{1}{2}
\end{align*} \]

54. \[\begin{align*}
f(x) &= -1.5x - 0.5
\end{align*} \]
55. \(3x - y \leq 2(x - 2)\)
 \[-y \leq 2x - 4 - 3x\]
 \[-y \leq -x - 4\]
 \[y \geq x + 4\]

56. \(5x + 4y > 18\)
 \[4y > -5x + 18\]
 \[y > \frac{-5x + 9}{4}\]

3-3 SOLVING SYSTEMS OF LINEAR INEQUALITIES, PAGES 199–204

CHECK IT OUT!

1a. \(x - 3y < 6\)
 \[-3y < -x + 6\]
 \[y > \frac{x}{3} - 2\]
 \[2x + y > 1.5\]
 \[y > -2x + 1.5\]

1b. \(y \leq 4\)
 \[2x + y < 1\]
 \[y < -2x + 1\]

2. \(d + s \leq 40\)
 \[s \leq -d + 40\]
 \[2d + 2.5s \geq 90\]
 \[2.5s \geq -2d + 90\]
 \[s \geq 0.8d + 36\]

3a. \(\) triangle
 \[\) trapezoid

THINK AND DISCUSS

1. Possible answer: The region containing the solutions is the region where the shadings overlap.

EXERCISES

GUIDED PRACTICE

1. Possible answer: Both are composed of straight lines. However, a system of linear equations has a solution at a point \((a, b)\), whereas a system of linear inequalities has a region containing many points as solutions.

2. \[y \geq x + 1\]
 \[y \geq -x + 1\]

3. \[y \geq x + 1\]
 \[y \leq \frac{1}{2}x + 1\]

4. \[y > 7x + 16\]
 \[y \leq -5x - 2\]

5. \[2y \leq -2x + 4\]
 \[y \leq -x + 2\]
 \[y < 3x - 1\]
6. Let \(x \) be the number of adult T-shirts sold, and \(y \) be the number of student T-shirts sold.
\[
\begin{align*}
\text{Adult T-shirts} & \quad \text{Student T-shirts} \\
0 & \quad 0 \\
60 & \quad 60 \\
120 & \quad 120 \\
180 & \quad 180 \\
240 & \quad 240
\end{align*}
\]
\[
\begin{align*}
x + y & \leq 250 \\
y & \leq -x + 250 \\
15x + 10y & \geq 3000 \\
10y & \geq -15x + 3000 \\
y & \geq -1.5x + 300
\end{align*}
\]

7. \(x \geq 0 \) and \(y \geq 0 \) since the number of CDs cannot be negative.

8. \(x \geq 0 \) and \(y \geq 0 \) since the number of CDs cannot be negative.

9. \(x \geq 0 \) and \(y \geq 0 \) since the number of CDs cannot be negative.

10. \(x \geq 0 \) and \(y \geq 0 \) since the number of CDs cannot be negative.

11. \(y < 5x \) \\
\(y < x \)

12. \(3y \geq 2x - 3 \) \\
\(y \geq \frac{2}{3}x - 1 \)

13. \(x + y > 5 \) \\
\(y > -x + 5 \)

14. \(y > 4 \) \\
\(x + 4y \geq 8 \)

15. \(y \geq \frac{1}{3}x - 4 \) \\
\(y \leq -\frac{1}{3}x - 1 \)

16. \(y \geq 0 \) \\
\(y \geq \frac{1}{3}x - 4 \)

17. \(y \geq 0 \) \\
\(y \geq -\frac{1}{3}x - 1 \)
18. rectangle

19. isosceles right triangle

20. Let \(x \) be the number of receiving yards, and \(y \) be the number of rushing yards.
\[
\begin{align*}
 x + y &< 2370 \\
 y &< -x + 2370 \\
 y &> 1645
\end{align*}
\]

21. Possible answer:
\[
\begin{cases}
 y \leq 2x \\
 y \geq 2x - 1 \\
 y \leq \frac{1}{2}x \\
 y \geq \frac{1}{2}x + 3
\end{cases}
\]

22. Possible answer:
\[
\begin{cases}
 y \leq x + 2 \\
 y \geq x - 3 \\
 y \leq -x \\
 y \geq -x - 5
\end{cases}
\]

23. Possible answer:
\[
\begin{cases}
 y \leq 3 \\
 x \geq 1 \\
 y \geq x - 1
\end{cases}
\]

24. Possible answer:
\[
\begin{cases}
 y \leq 4 \\
 y \leq \frac{1}{2}x \\
 y \leq -3x + 12
\end{cases}
\]

25a. Possible answer: Let \(x \) be the weight of the driver.
Champ Car: \(y \geq 1565 \)
Formula One: \(y \geq 1322.77 - x \), where \(x \) represents the weight of the driver.

b. Take the average weight of racecar drivers.
Possible answer: \(D : \{ x \in \mathbb{R} \mid 100 \leq x \leq 250 \} \)
\(R : \{ y \in \mathbb{R} \mid 1000 \leq y \leq 2000 \} \)

c. Possible answer: \(D = \{ t \in \mathbb{R} \mid -40 \leq t \leq 40 \} \)
\(R = \{ w \in \mathbb{R} \mid w \geq 0 \} \)

26a. Possible answer: \(D = \{ x \in \mathbb{R} \mid -97 \leq x \leq 97 \} \)
\(R = \{ y \in \mathbb{R} \mid y \leq -97 \} \)

27. Let \(x \) be Brian’s earnings, and \(y \) be Maria’s earnings.
\[
\begin{align*}
 x &\geq 0 \\
 y &\geq 0 \\
 x + y &\leq 114,650 \\
 x + y &\geq 56,801 \\
 y &\geq x + 2000
\end{align*}
\]

28. \(y > \frac{2}{5}x \)
\(y \geq \frac{2}{5}x - 4 \)
Possible answer: \((3, 1), (5, -1), (10, 5) \)

29. \(y > -7 \)
\(y < 2x + 5 \)
\(y < -3x + 4 \)
Possible answer: \((0, 0), (-1, 2), \left(1, -\frac{1}{2}\right) \)
30. $y \geq -8$
 $y < -\frac{1}{2}x + 2$
 $x > -6$
 Possible answer: $(-2, -3), (-1, 1), (10, -4)$

31. $y \leq -\frac{1}{6}x + \frac{2}{3}$
 $y < x - 3$
 Possible answer: $(0, -5), (3, -2), (-6, -10)$

32. If the boundary lines are parallel, the possible solutions are
 i) above the upper line
 ii) below the lower line
 iii) between the two lines
 iv) no solution

33. Possible answer: Yes; if the lines are parallel and the regions do not overlap; for example, $\left\{ \begin{array}{l} y > x + 4 \\ y < x - 7 \end{array} \right.$

TEST PREP
34. D
35. G
36. C

CHALLENGE AND EXTEND
37. $\left\{ \begin{array}{l} x \geq 0 \\ y \geq 0 \end{array} \right.$
 Possible answer: $y \leq x + 1$
 $\left\{ \begin{array}{l} y \geq x - 1 \\ y \leq -x + 4 \end{array} \right.$

38. Yes; $m = -3$ makes the equations parallel and the regions do not overlap. Therefore there is no solution for the system.

39. Let x be the amount in low risk, and y be the amount in high risk.
 $x + y \leq 30,000$
 $y \leq 30,000 - x$
 $0.05x + 0.07y \geq 1900$
 $0.05x + 0.07(30,000 - x) \geq 1900$
 $0.05x + 2100 - 0.07x \geq 1900$
 $-0.02x \geq -200$
 $x \leq 10,000$

 $y = 30,000 - x$
 $y = 30,000 - 10,000$
 $y = 20,000$

 Kira must invest at least $20,000 in the high-risk investment.

SPIRAL REVIEW
40. $-7, \frac{1}{7}$
41. $\frac{3}{4}, -\frac{4}{3}$
42. $-2.48, \frac{1}{2.48}$
43. $1, -1$
44. $m = 1 - (-\frac{7}{2})$
45. $y = -3$
46. $m = \frac{0 - (-1)}{0 - 1}$
47. $y - 6 = -\frac{1}{3}(x - 9)$
48. $m = -\frac{1}{4}$
49. $m = -1$
40. $y - 4.5 = -\frac{1}{4}(x + 2)$
41. $y - 2 = -1(x - 3)$
42. $y - 4.5 = -\frac{1}{4}x - 0.5$
43. $y = -\frac{1}{4}x + 4$
44. $y = -\frac{1}{4}x + 0$
45. $y = -x$
46. $y = -\frac{1}{3}x + 3$
47. $y = \frac{1}{3}x + 9$
48. $y = -\frac{1}{4}x + 4$
49. $r = 0.985$

3-4 LINEAR PROGRAMMING, PAGES 205–211

CHECK IT OUT!
1. [Graph of a linear programming problem with shaded feasible region]
2. Evaluate the vertices of the feasible region.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(P = 25x + 30y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
<td>25(0) + 30(1.5) = 45</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>25(0) + 30(4) = 120</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>25(2) + 30(3) = 140</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>25(3) + 30(1.5) = 120</td>
</tr>
</tbody>
</table>

The maximum value is \(P = 140 \).

3. Let \(x \) be the number of bookcase A, and \(y \) be the number of bookcase B.

\[
\begin{align*}
x & \leq 8 \\
y & \leq 12 \\
32x + 16y & \geq 320 \\
x & > 0 \\
y & > 0
\end{align*}
\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(P = 200x + 125y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>12</td>
<td>200(8) + 125(12) = 3100</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>200(4) + 125(12) = 2300</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>200(8) + 125(4) = 2100</td>
</tr>
</tbody>
</table>

8 of bookcase A and 4 of bookcase B will minimize the cost.

THINK AND DISCUSS

1. Possible answer: Most of the questions are based on physical objects, where a negative quantity doesn’t make sense.

2. The region is unbounded.

3. Possible answer: Look for specific units, e.g. dollars, pounds. If the question asks for the maximum profit, look for $ units.

4. Constraints:
\[
\begin{align*}
b & \geq 0 \\
y & \geq 0 \\
1.2b + 2r & \leq 600 \\
2.50b + 2.50r & \leq 1000
\end{align*}
\]

EXERCISES

GUIDED PRACTICE

1. constraints

5. Find the vertices of the feasible region.
Maximize the objective function \(P = 10x + 16y \).

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(P = 10x + 16y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>10(0) + 16(0) = 0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>10(0) + 16(3) = 48</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>10(1) + 16(6) = 106</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>10(7) + 16(0) = 70</td>
</tr>
</tbody>
</table>

\(P = 106 \) is the maximum.

6. Find the vertices of the feasible region.
Minimize the objective function: \(P = 3x + 5y \).

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(P = 3x + 5y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>3(0) + 5(-1) = -5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3(0) + 5(1) = 5</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>3(24) + 5(0) = 72</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3(4) + 5(5) = 37</td>
</tr>
</tbody>
</table>

\(P = -5 \) is the minimum.

7. Find the vertices of the feasible region. Maximize the objective function \(P = 2.4x + 1.5y \).

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(P = 2.4x + 1.5y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-3</td>
<td>2.4(-2) + 1.5(-3) = -9.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2.4(1) + 1.5(1) = 3.9</td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
<td>2.4(-2) + 1.5(1) = -3.3</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>2.4(2) + 1.5(-1) = 3.3</td>
</tr>
</tbody>
</table>

\(P = 3.9 \) is the maximum.
8. Let \(x \) be the number of cleanings, and \(y \) be the number of cavities filled.

\[
\begin{align*}
0 & \leq y \leq 4 \\
0.5x + y & \leq 7
\end{align*}
\]

Maximize the objective function \(P = 40x + 95y \).

\[
\begin{array}{c|cc|c}
 x & y & P = 40x + 95y \\
0 & 0 & 40(0) + 95(0) = 0 \\
0 & 4 & 40(0) + 95(4) = 380 \\
6 & 4 & 40(6) + 95(4) = 620 \\
14 & 0 & 40(14) + 95(0) = 560 \\
\end{array}
\]

Dr. Lee should book 6 cleanings and 4 fillings to maximize his earnings.

10. Let \(x \) be the number of journey bags, and \(y \) be the number of trek bags.

\[
\begin{align*}
x & \geq 0 \\
y & \geq 0
\end{align*}
\]

Maximize the objective function \(P = x + 3y \).

\[
\begin{array}{c|cc|c}
x & y & P = x + 3y \\
0 & −3 & (0) + 3(−3) = −9 \\
0 & 4 & (0) + 3(4) = 12 \\
5 & −1 & (5) + 3(−1) = 2 \\
5 & −2 & (5) + 3(−2) = −1 \\
\end{array}
\]

\(P = 12 \) is the maximum.

11. Let \(x \) be the number of radio commercials, and \(y \) be the number of prime-time TV commercials.

\[
\begin{align*}
0.5x + 1500y & \leq 60,000 \\
y & > 0
\end{align*}
\]

Maximize the objective function \(P = 20x + 30y \).

\[
\begin{array}{c|cc|c}
x & y & P = 20x + 30y \\
30 & 0 & 20(30) + 30(0) = 600 \\
60 & 0 & 20(60) + 30(0) = 1200 \\
30 & 32 & 20(30) + 30(32) = 1560 \\
60 & 24 & 20(60) + 30(24) = 1920 \\
\end{array}
\]

There should be 60 radio and 24 prime-time TV commercials.

12. Find the vertices of the feasible region.

Maximize the objective function \(P = −21x + 11y \).

\[
\begin{array}{c|cc|c}
x & y & P = −21x + 11y \\
0 & 0 & −21(0) + 11(0) = 0 \\
1 & 0 & −21(1) + 11(0) = −21 \\
0 & 5 & −21(0) + 11(5) = 55 \\
3 & 8 & −21(3) + 11(8) = 25 \\
\end{array}
\]

\(P = 55 \) is the maximum.

13. Find the vertices of the feasible region.

Minimize the objective function \(P = −2x − 4y \).

\[
\begin{array}{c|cc|c}
x & y & P = −2x − 4y \\
−7 & 0 & −2(−7) − 4(0) = 14 \\
0 & 9 & −2(0) − 4(9) = −36 \\
−8 & 9 & −2(−8) − 4(9) = −20 \\
−3.5 & 0 & −2(−3.5) − 4(0) = 7 \\
\end{array}
\]

\(P = −36 \) is the minimum.

14. Find the vertices of the feasible region.

Maximize the objective function \(P = x + 3y \).

\[
\begin{array}{c|cc|c}
x & y & P = x + 3y \\
0 & −3 & (0) + 3(−3) = −9 \\
0 & 4 & (0) + 3(4) = 12 \\
5 & −1 & (5) + 3(−1) = 2 \\
5 & −2 & (5) + 3(−2) = −1 \\
\end{array}
\]

15. Let \(x \) be the number of radio commercials, and \(y \) be the number of prime-time TV commercials.

\[
\begin{align*}
30 & \leq x \leq 60 \\
y & > 0
\end{align*}
\]

Maximize the objective function \(P = 20x + 30y \).

\[
\begin{array}{c|cc|c}
x & y & P = 20x + 30y \\
30 & 0 & 20(30) + 30(0) = 600 \\
60 & 0 & 20(60) + 30(0) = 1200 \\
30 & 32 & 20(30) + 30(32) = 1560 \\
60 & 24 & 20(60) + 30(24) = 1920 \\
\end{array}
\]

16a. Let \(x \) be the number of fans in the upper deck, and \(y \) be the number of fans in the lower deck.

\[
\begin{align*}
0 & \leq y \leq 60,000 \\
0 & \leq x \leq 120,000 \\
x + y & \leq 160,000
\end{align*}
\]

Maximize the objective function \(P = 25x + 45y \).

\[
\begin{array}{c|cc|c}
x & y & P = 25x + 45y \\
0 & 0 & 0 \\
0 & 60,000 & 2,700,000 \\
100,000 & 60,000 & 5,200,000 \\
120,000 & 40,000 & 4,800,000 \\
120,000 & 0 & 3,000,000 \\
\end{array}
\]

100,000 upper deck and 60,000 lower deck tickets will maximize profit.

b. Possible answer: The system of inequalities does not change, but the objective function changes. The new solution is 120,000 upper deck and 40,000 lower deck tickets to maximize profits.

17. Let \(x \) be the number of journey bags, and \(y \) be the number of trek bags.

\[
\begin{align*}
0 & \leq x \leq 4 \\
0 & \leq y \leq 15 \\
40x + 80y & \geq 400
\end{align*}
\]

Minimize the objective function \(P = 4x + 6y \).

\[
\begin{array}{c|cc|c}
x & y & P = 4x + 6y \\
0 & 5 & 4(0) + 6(5) = 30 \\
0 & 15 & 4(0) + 6(15) = 90 \\
4 & 3 & 4(4) + 6(3) = 32 \\
4 & 15 & 4(4) + 6(15) = 106 \\
\end{array}
\]

The minimum number of hours required is 32 h.
18. parallelogram
\[\begin{align*}
-1 & \leq x \leq 2 \\
x - 4 & \leq y \leq x + 2
\end{align*} \]

19. right triangle
\[\begin{align*}
y & \leq x + 2 \\
y & \geq 2x \\
y & \geq -\frac{1}{2}x
\end{align*} \]

20. trapezoid
\[\begin{align*}
1 & \leq y \leq 6 \\
y & \leq -2x + 8 \\
y & \leq 2x + 10
\end{align*} \]

21. Let \(x \) be the number of gas stops, and \(y \) be the number of flat tire stops.
\[\begin{align*}
0 & \leq x \leq 14 \\
0 & \leq y \\
0.25x + 0.75y & < 8
\end{align*} \]
Maximize the objective function \(P = x + y \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(P = x + y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(0) + (0) = 0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>(0) + (10) = 10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>(2) + (10) = 12</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>(14) + (6) = 20</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>(14) + (0) = 14</td>
</tr>
</tbody>
</table>

20 stops is the maximum.

22. Possible answer: If the feasible region is unbounded, the objective function may not have a maximum value, or a minimum value, and such a linear programming problem has no solution.

23. Let \(x \) be the number of Soy Joy smoothies, and \(y \) be the number of Vitamin Boost smoothies.
\[\begin{align*}
x & \geq 0 \\
y & \geq 0 \\
2x + y & \leq 100 \\
x + 3y & \leq 100
\end{align*} \]
Maximize the objective function \(P = 2.75x + 3.25y \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(P = 2.75x + 3.25y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2.75(0) + 3.25(0) = 0</td>
</tr>
<tr>
<td>0</td>
<td>33</td>
<td>2.75(0) + 3.25(33) = 107.25</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>2.75(50) + 3.25(0) = 137.5</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>2.75(40) + 3.25(20) = 175</td>
</tr>
</tbody>
</table>

The store should make 40 Soy Joy and 20 Vitamin Boost smoothies.

24. Possible answer: The objective function could calculate the profit/loss and the loss could be negative values.

25. Possible answer: Substitute the values from every vertex of the feasible region into the objective function one pair at a time. Depending on the problem statement, look for the greatest value of the objective function to identify the maximum or the least value to identify the minimum.

26. Possible answer: Once you have identified the feasible region, find the intersection points of the lines that form that region. The coordinates of the intersections are the coordinates of the vertices.

TEST PREP

27. D

28. A:
\[P(0,0) = -4(0) + (0) - 1 = -1 \]

29. G

CHALLENGE AND EXTEND

b. (350, 400) represents 350 of bacteria type A and 400 of bacteria type B. (400, 350) represents 400 of bacteria type A and 350 of bacteria type B.

C. Only the point (350, 400) satisfies the constraint, as the minimum value for type B must be at least 400.

SPIRAL REVIEW

31. \(f(7) = 1 = \frac{1}{2} \frac{1}{7} - 3 = \frac{1}{11} \)
\[f(-\frac{1}{2}) = \frac{1}{2} = \frac{1}{1} \]
\[= -1 - 3 = -1 \frac{1}{4} \]

32. \(f(7) = 0.5(7) = 3.5 \)
\[f(-\frac{1}{2}) = 0.5(-\frac{1}{2}) = -\frac{1}{4} \]

33. \(f(7) = \frac{7^2 - 1}{7 - 1} = \frac{48}{6} = 8 \)
\[f(-\frac{1}{2}) = \frac{(-\frac{1}{2})^2 - 1}{-\frac{1}{2} - 1} = \frac{1}{4} - 1 = \frac{1}{2} \]

34. \(f(x) = |x| \)
\[g(x) = |x - 6| - 3 \]

35. \(f(x) = |x| \)
\[g(x) = |x - \frac{1}{3} + \frac{4}{3} | \]

36. \(f(x) = |x| \)
\[g(x) = |x + 2.5| + 0.75 \]
1. \[
\begin{align*}
2x + y &= -5 \\
x + 2y &= 2 \\
y &= -2x - 5
\end{align*}
\]
\[
\begin{array}{c|c}
\text{x} & \text{y} \\
\hline
2 & -9 \\
0 & -5 \\
-2 & -1 \\
-4 & 3 \\
\end{array}
\]
The solution to the system is \((-4, 3).\)

2. \[
\begin{align*}
x + y &= -1 \\
x - 2y &= -4 \\
y &= -x - 1
\end{align*}
\]
\[
\begin{array}{c|c}
\text{x} & \text{y} \\
\hline
2 & -3 \\
0 & -1 \\
-2 & 1 \\
-4 & 3 \\
\end{array}
\]
The solution to the system is \((-2, 1).\)

3. \[
\begin{align*}
x &= y - 2 \\
3x - y &= 2 \\
y &= x + 2
\end{align*}
\]
\[
\begin{array}{c|c}
\text{x} & \text{y} \\
\hline
-1 & 1 \\
0 & 2 \\
1 & 3 \\
2 & 4 \\
\end{array}
\]
The solution to the system is \((2, 4).\)

4. \[
\begin{align*}
y &= \frac{2}{3}x - 4 \\
y &= \frac{2}{3}x - \frac{4}{3}
\end{align*}
\]
inconsistent; no solution

5. \[
\begin{align*}
y &= \frac{5}{6}x - \frac{7}{3} \\
y &= -\frac{1}{3}x + 5
\end{align*}
\]
independent; one solution

6. \[
\begin{align*}
y &= \frac{1}{2}x + 5 \\
y &= \frac{1}{2}x + 5
\end{align*}
\]
dependent; infinitely many solutions

7. Step 1: Solve one equation for one variable. The first equation is already solved for \(y\): \(y = x + 3.\)
Step 2: Substitute the expression into the other equation.
\[
\begin{align*}
2x + 4y &= 24 \\
2x + 4(x + 3) &= 24 \\
6x + 12 &= 24 \\
6x &= 12 \\
x &= 2
\end{align*}
\]
The solution is the ordered pair \((4, 5).\)

8. Step 1: Solve one equation for one variable. The first equation is already solved for \(x\): \(x = 5.\)
Step 2: Substitute the expression into the other equation.
\[
\begin{align*}
2x + 3y &= 19 \\
2(5) + 3y &= 19 \\
10 + 3y &= 19 \\
3y &= 9 \\
y &= 3
\end{align*}
\]
The solution is the ordered pair \((4, 3).\)

9. \[
\begin{align*}
x - y &= 5 \\
x &= y + 5 \\
3x - 2y &= 14 \\
3(y + 5) - 2y &= 14 \\
3y + 15 - 2y &= 14 \\
y + 15 &= 14 \\
y &= -1
\end{align*}
\]
\[
\begin{align*}
x &= y + 5 \\
x &= (-1) + 5 \\
x &= 4 \\
solution (4, -1)
\end{align*}
\]

10. Step 1: Find the value of one variable. Add to eliminate \(y\).
\[
\begin{align*}
x + 2y &= 15 \\
x - 2y &= -9 \\
2x &= 6 \\
x &= 3
\end{align*}
\]
Step 2: Substitute the \(x\)-value into one of the original equations to solve for \(y\).
\[
\begin{align*}
x + 2y &= 15 \\
(3) + 2y &= 15 \\
2y &= 12 \\
y &= 6
\end{align*}
\]
The solution is the ordered pair \((3, 6).\)

11. Step 1: To eliminate \(y\), multiply both sides of the second equation by \(-1\).
\[-1(8x - 4y) = -1(12) \quad 2\]
Add to eliminate \(y\).
\[
\begin{align*}
5x - 4y &= 0 \\
-8x + 4y &= -12 \\
-3x &= -12 \\
x &= 4
\end{align*}
\]
Step 2: Substitute the \(x\)-value into one of the original equations to solve for \(y\).
\[
\begin{align*}
5x - 4y &= 0 \\
5(4) - 4y &= 0 \\
20 - 4y &= 0 \\
-4y &= -20 \\
y &= 5
\end{align*}
\]
The solution is the ordered pair \((4, 5).\)

12. Step 1: To eliminate \(x\), multiply both sides of the second equation by \(-2\).
\[-2(2x + 6y) = -2(-4) \quad 2\]
Add to eliminate \(x\).
\[
\begin{align*}
4x + 2y &= 12 \\
-4x - 12y &= -8 \\
-10y &= 20 \\
y &= -2
\end{align*}
\]
Step 2: Substitute the \(y\)-value into one of the original equations to solve for \(x\).
\[
\begin{align*}
4x + 2y &= 12 \\
4x + 2(-2) &= 12 \\
4x &= 16 \\
x &= 4
\end{align*}
\]
The solution is the ordered pair \((4, -2).\)
13. The smallest possible value is $P = 4$ when $x = 1$ and $y = 0$.

14. The biggest possible value is $P = 34$ when $x = 1$ and $y = 6$.

15. $x + y < 7$

16. $60x + 50y < 350$

17.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$P = 4x + 5y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4(1) + 5(0) = 4</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>4(8) + 5(0) = 32</td>
</tr>
<tr>
<td>10</td>
<td>7/3</td>
<td>4(10)/3 + 5(7)/3 = 25</td>
</tr>
</tbody>
</table>

18.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$P = 4x + 5y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0</td>
<td>4(-2) + 5(0) = -8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4(2) + 5(0) = 8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4(2) + 5(3) = 23</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>4(1) + 5(6) = 34</td>
</tr>
</tbody>
</table>

19. Let x be the number of special services, and y be the number of haircuts in a day.

\[
\begin{align*}
0 & \leq x \leq 4 \\
y & \geq 0 \\
x + 0.5y & \leq 8
\end{align*}
\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$P = 45x + 20y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>45(0) + 20(0) = 0</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>45(0) + 20(16) = 320</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>45(4) + 20(0) = 180</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>45(4) + 20(8) = 340</td>
</tr>
</tbody>
</table>

To produce the maximum income, the salon should schedule 4 special services and 8 haircuts per day; $340.

3-5 LINEAR EQUATIONS IN THREE DIMENSIONS, PAGES 214–218

CHECK IT OUT!

1. a.–c.

2. x-intercept: $x = 4(0) + 2(0) = 4$

 $x = 4$

 y-intercept: $0 - 4y + 2(0) = 4$

 $-4y = 4$

 $y = -1$

 z-intercept: $0 - 4(0) + 2(z) = 4$

 $2z = 4$

 $z = 2$

3a. $3.5x + 1.5y + 0.75z = 61.50$

 b. $3.5(6) + 1.5y + 0.75(24) = 61.50$

 $21 + 1.5y + 18 = 61.50$

 $1.5y = 22.50$

 $y = 15$

THINK AND DISCUSS

1. Possible answer: (10, 4, 3)

2. Passes through (0, 0, 1) and (0, 1, 0) and contains lines parallel to the x-axis.
EXERCISES

GUIDED PRACTICE

1. Possible answer: The 3-dimensional coordinate system has 3 axes instead of 2 and uses 3 coordinates instead of 2 to denote a point.

2.
 - x-int.: $x + 0 + 0 = 3$
 - $x = 3$
 - y-int.: $0 + y + 0 = 3$
 - $y = 3$
 - z-int.: $0 + 0 + z = 3$
 - $z = 3$

3.
 - $x = 1.5$ and $y = 3$

4.
 - $x = 1.5$ and $y = 3$

5.
 - $x = 1.5$ and $y = 3$

6.
 - $x = 1.5$ and $y = 3$

7.
 - $x = 1.5$ and $y = 3$

8.
 - x-int.: $1.5x + 3(0) - 2(0) = -6$
 $1.5x = -6$
 $x = -4$
 - y-int.: $1.5(0) + 3y - 2(0) = -6$
 $3y = -6$
 $y = -2$
 - z-int.: $1.5(0) + 3(0) - 2z = -6$
 $-2z = -6$
 $z = 3$

9a. $225x + 150y + 300z = 3000$
 b. i. $225(8) + 150(6) + 300z = 3000$
 $300z = 300$
 $z = 1$
 ii. $225(x) + 150(1) + 300(5) = 3000$
 $225x = 1350$
 $x = 6$
 iii. $225(4) + 150y + 300(4) = 3000$
 $150y = 900$
 $y = 6$
 iv. $225(10) + 150(5) + 300z = 3000$
 $300z = 0$
 $z = 0$

c. 20 (all dishwashers)

PRACTICE AND PROBLEM SOLVING

10.
 - $(2, -4, 3)$
 - $x = 2$

11.
 - $(-1, 1, 4)$
 - $x = 1$

12.
 - $(3, 0, 0)$
 - $y = 3$

13.
 - $(0, -2, 0)$
 - $z = 0$

14.
 - $(5, 0, 2)$
 - $x = 5$

15.
 - $(-3, -3, -3)$
 - $y = -3$

16.
 - $(0, -3, 2)$
 - $z = 2$

17.
 - $(-4, -1, 1)$
 - $z = 1$
18. x-int.: $x + (0) - (0) = -1$
\[x = -1 \]

y-int.: $(0) + y - (0) = -1$
\[y = -1 \]

z-int.: $(0) + (0) - z = -1$
\[z = 1 \]

19. x-int.: $2x - (0) + 2(0) = 4$
\[2x = 4 \]
\[x = 2 \]

y-int.: $2(0) - y + 2(0) = 4$
\[-y = 4 \]
\[y = -4 \]

z-int.: $2(0) - (0) + 2z = 4$
\[2z = 4 \]
\[z = 2 \]

20. x-int.: $2x + \frac{1}{2}(0) + (0) = -2$
\[2x = -2 \]
\[x = -1 \]

y-int.: $2(0) + \frac{1}{2}y + (0) = -2$
\[\frac{1}{2}y = -2 \]
\[y = -4 \]

z-int.: $2(0) + \frac{1}{2}(0) + z = -2$
\[z = -2 \]

21. x-int.: $5x + (0) - (0) = -5$
\[5x = -5 \]
\[x = -1 \]

y-int.: $5(0) + y - (0) = -5$
\[y = -5 \]

z-int.: $5(0) + (0) - z = -5$
\[-z = -5 \]
\[z = 5 \]

22. x-int.: $8x + 6(0) + 4(0) = 24$
\[8x = 24 \]
\[x = 3 \]

y-int.: $8(0) + 6y + 4(0) = 24$
\[6y = 24 \]
\[y = 4 \]

z-int.: $8(0) + 6(0) + 4z = 24$
\[4z = 24 \]
\[z = 6 \]

23. x-int.: $3x - 3(0) + 2.5(0) = 7.5$
\[3x = 7.5 \]
\[x = 2.5 \]

y-int.: $3(0) - 3y + 2.5(0) = 7.5$
\[-3y = 7.5 \]
\[y = -2.5 \]

z-int.: $3(0) - 3(0) + 2.5z = 7.5$
\[2.5z = 7.5 \]
\[z = 3 \]

24a. $10x + 15y + 2.5z = 80$

25. Let x be the number of free throws, y be the number of 2-pt. field goals, and z be the number of 3-pt. field goals.

\[x + 2y + 3z = 60 \]
\[20 + 2y + 3z = 60 \]
\[2y + 3z = 40 \]

Possible answer:

<table>
<thead>
<tr>
<th>Three-pointers</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-pointers</td>
<td>17</td>
<td>14</td>
<td>11</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

26. $(-3, -3, 3), (-3, 0, 3), (0, -3, 3), (0, 0, 3), (-3, -3, 0), (0, 0, 0), (0, -3, 0)$

27. $(-2, -2, 2), (-2, 2, 2), (2, -2, 2), (2, 2, 2), (-2, -2, -2), (-2, -2, -2)$

28. $6h + 4t + 2c = 8000$
\[6h + 4(400) + 2c = 8000 \]
\[6h + 2c = 6400 \]

6400 remaining
\[2000 \times 400 = 1600 \text{ ft}^2 \text{ remaining} \]
\[800 \text{ ft}^2 \text{ hardwood and } 800 \text{ ft}^2 \text{ carpet} \]
\[6(800) = $4800 for hardwood \]
\[2(800) = $1600 for carpet \]

Total is 6400.

Yes, it is possible to finish the rest of the flooring half in hardwood and half in carpet.

29. Possible answer: No, it only represents 1 dimension. For 2 dimensions you must move up and down as well as forward and backward or left and right.

30. Possible answer: Draw 2 perpendicular lines just like a 2D grid. Label the horizontal “y” and the vertical “z”. Draw a line which would look like $y = x$ in 2D, through this graph. Label it “x”.

31a. $(7 \pm 4, 12 \pm 4, 10)$

Possible answers: $(3, 8, 10)$ and $(11, 16, 10)$.

b. $(7, 12, 10 - 1.5) = (7, 12, 8.5)$

c. $(7, 12, 8.5 + 4) = (7, 12, 12.5)$

32. Solution B is incorrect. To find the x-intercept, the z-value must equal 0.

TEST PREP

33. A

34. C; intercepts are at $(2, 0, 0), (0, 1, 0)$, and $(0, 0, 3)$
35. H 36. \(\frac{3}{4} \); \(5(0) - 2(0) - 4z = -3 \)

\[-4z = -3 \]

\[z = \frac{3}{4} \]

CHALLENGE AND EXTEND

37. [Diagram of a square pyramid]

38. [Diagram of a triangular prism]

40. [Diagram of a sphere]

41. Possible answer:

\[x + 2y - 4z = 4 \]

SPIRAL REVIEW

43. square pyramid

45. sphere

47. **Step 1** Solve one equation for one variable. The first equation is already solved for \(x; x = 5y \). **Step 2** Substitute the expression into the other equation.

\[\frac{2}{5} x + 7y = 18 \]

\[\frac{2}{5}(5y) + 7y = 18 \]

\[2y + 7y = 18 \]

\[9y = 18 \]

\[y = 2 \]

Step 3 Substitute the \(y \)-value into one of the original equations to solve for \(x \).

\[x = 5y \]

\[x = 5(2) \]

\[x = 10 \]

The solution is the ordered pair \((10, 2) \).

48. **Step 1** Solve one equation for one variable.

\[6x - y = 5 \]

\[y = -6x + 5 \]

Step 2 Substitute the expression into the other equation.

\[4y - 3x = 1 \]

\[4(6x - 5) - 3x = 1 \]

\[24x - 20 - 3x = 1 \]

\[21x = 21 \]

\[x = 1 \]

Step 3 Substitute the \(x \)-value into one of the original equations to solve for \(y \).

\[y = -6x + 5 \]

\[y = -6(1) + 5 \]

\[y = 1 \]

The solution is the ordered pair \((1, 1) \).

49. **Step 1** Solve one equation for one variable.

\[x + 3y = 6 \]

\[x = -3y + 6 \]

Step 2 Substitute the expression into the other equation.

\[2x - 3y = 9 \]

\[2(-3y + 6) - 3y = 9 \]

\[-6y + 12 - 3y = 9 \]

\[-9y = -3 \]

\[y = \frac{1}{3} \]

Step 3 Substitute the \(y \)-value into one of the original equations to solve for \(x \).

\[x = -3y + 6 \]

\[x = -3\left(\frac{1}{3}\right) + 6 \]

\[x = -1 + 6 \]

\[x = 5 \]

The solution is the ordered pair \(\left(5, \frac{1}{3}\right) \).}

3-6 SOLVING LINEAR SYSTEMS IN THREE VARIABLES, PAGES 220–226

CHECK IT OUT!

\[\begin{align*}
-x + y + 2z &= 7 \\
2x + 3y + z &= 1 \\
-3x - 4y + z &= 4 \\
6x + 8y - 2z &= -8 \\
5x + 9y &= -1 \\
5x + 7y &= -3 \\
5x + 9y &= -1
\end{align*} \]

Step 1 Eliminate one variable. Multiply equation \(3 \) by \(-1\) and eliminate \(z \) from equations \(2 \) and \(3 \) by adding.

\[\begin{align*}
2x + 3y + z &= 1 \\
3x + 4y + z &= -4 \\
5x + 7y &= -3
\end{align*} \]

Multiply equation \(3 \) by \(-2\) and eliminate \(z \) from equations \(1 \) and \(3 \) by adding.

\[\begin{align*}
x + y + 2z &= 7 \\
6x + 8y - 2z &= -8 \\
5x + 9y &= -1 \\
5x + 7y &= -3 \\
5x + 9y &= -1
\end{align*} \]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation \(5 \) by \(-1\) and eliminate \(x \) from equations \(3 \) and \(5 \) by adding.

\[\begin{align*}
5x + 7y &= -3 \\
-5x - 9y &= 1 \\
\hline
2y &= -2 \\
y &= 1
\end{align*} \]

Step 3 Use one of the equations in your 2-by-2 system to solve for \(x \).

\[\begin{align*}
5x + 7y &= -3 \\
5x + 7(1) &= -3 \\
5x &= -10 \\
x &= -2
\end{align*} \]

Step 4 Substitute for \(x \) and \(y \) in one of the original equations to solve for \(z \).

\[\begin{align*}
-x + y + 2z &= 7 \\
2 + 1 + 2z &= 7 \\
2z &= 4 \\
z &= 2
\end{align*} \]

The solution is \((-2, 1, 2)\).
2. **Step 1** Let x represent the number of points for a first-place vote, y for a second-place vote, and z for a third-place vote.

- $3x + y + 4z = 15$ Jada’s points
- $2x + 4y = 14$ Maria’s points
- $2x + 2y + 3z = 13$ Al’s points

Step 2 Solve for x in equation (2).

\[2x + 4y = 14\]

- $2x = -4y + 14$
- $x = -2y + 7$

Step 3 Substitute for x in equations (1) and (3).

\[
\begin{align*}
3(-2y + 7) + y + 4z &= 15 \quad \text{(1)} \\
2(-2y + 7) + 2y + 3z &= 13 \quad \text{(3)} \\
-5y + 4z &= -6 \quad \text{(4)} \\
-2y + 3z &= -1 \quad \text{(5)}
\end{align*}
\]

Step 4 Multiply equation (5) by -1 and solve for z by adding equations (4) and (5).

\[
\begin{align*}
-5y + 4z &= -6 \quad \text{(4)} \\
2y - 3z &= 1 \quad \text{(5)} \\
-3y &= z - 5
\end{align*}
\]

- $z = 3y - 5$

Step 5 Substitute for z in equation (4).

\[\begin{align*}
-5y + 4(3y - 5) &= -6 \\
7y &= 14 \\
y &= 2
\end{align*}\]

Step 6 Substitute for y to solve for x and then for z.

\[
\begin{align*}
2x + 4y &= 14 \quad \text{(2)} \\
2x + 4(2) &= 14 \\
2x &= 6 \\
x &= 3
\end{align*}\]

\[
\begin{align*}
-9x + 3y &= 7 \\
-9x + 3(2) &= 7 \\
-9x &= 1 \\
x &= 1
\end{align*}\]

The solution to the system is $(3, 2, 1)$.

3a. \[
\begin{align*}
3x - y + 2z &= 4 \quad \text{(1)} \\
2x - y + 3z &= 7 \\
-9x + 3y - 6z &= -12 \quad \text{(3)}
\end{align*}\]

Multiply equation (2) by -1, and eliminate y from equations (1) and (3) by adding.

\[
\begin{align*}
3x - y + 2z &= 4 \quad \text{(1)} \\
-2x + y - 3z &= -2 \quad \text{(2)} \\
x - z &= -3 \quad \text{(4)}
\end{align*}\]

Multiply equation (2) by 3, and eliminate y from equations (1) and (3) by adding.

\[
\begin{align*}
6x - 3y + 9z &= 21 \quad \text{(2)} \\
-9x + 3y - 6z &= -12 \quad \text{(3)} \\
-3x + 3z &= 9 \quad \text{(5)}
\end{align*}\]

\[
\begin{align*}
x - z &= -3 \quad \text{(4)} \\
-3x + 3z &= 9 \quad \text{(5)}
\end{align*}\]

Multiply equation (3) by 3, and eliminate x from equations (4) and (5) by adding.

\[
\begin{align*}
3x - 3z &= -9 \quad \text{(4)} \\
-3x + 3z &= 9 \quad \text{(5)}
\end{align*}\]

- $0 = 0$

consistent and dependent; infinite number of solutions

b. \[
\begin{align*}
x - y + 3z &= 6 \\
2x - 4y + 6z &= 10 \\
y - z &= -2
\end{align*}\]

Multiply equation (1) by -2, and eliminate z from equations (1) and (2) by adding.

\[
\begin{align*}
-2x + 2y - 6z &= -12 \quad \text{(1)} \\
2x - 4y + 6z &= 10 \quad \text{(2)} \\
-2y &= -2
\end{align*}\]

- $y = 1$

Eliminate y from equations (1) and (3) by adding.

\[
\begin{align*}
x - y + 3z &= 6 \quad \text{(1)} \\
y - z &= -2 \quad \text{(3)} \\
x + 2z &= 4 \quad \text{(5)}
\end{align*}\]

\[
\begin{align*}
y - 1 \quad \text{(4)} \\
x + 2z &= 4 \quad \text{(5)}
\end{align*}\]

inconsistent, no solution

THINK AND DISCUSS

1. Possible answer: Inconsistent systems have two vertical, non-intersecting planes each cut by a third vertical plane. Dependent systems have two identical planes cut by a third plane.

2.

EXERCISES

GUIDED PRACTICE

\[
\begin{align*}
\begin{align*}
-2x + y + 3z &= 20 \quad \text{(1)} \\
-3x + 2y + z &= 21 \quad \text{(2)} \\
3x - 2y + 3z &= -9 \quad \text{(3)}
\end{align*}
\end{align*}\]

Step 1 Eliminate one variable. Multiply equation (1) by -2, and eliminate y from equations (1) and (2) by adding.

\[
\begin{align*}
4x - 2y - 6z &= -40 \quad \text{(1)} \\
-3x + 2y + z &= 21 \quad \text{(2)} \\
x - 5z &= -19 \quad \text{(4)}
\end{align*}\]

Multiply equation (1) by 2 and eliminate y from equations (1) and (3) by adding.

\[
\begin{align*}
-4x + 2y + 6z &= 40 \quad \text{(1)} \\
3x - 2y + 3z &= -9 \quad \text{(3)} \\
x + 9z &= 31 \quad \text{(5)}
\end{align*}\]

Multiply equation (1) by 2 and eliminate z from equations (1) and (3) by adding.

\[
\begin{align*}
-x - 5z &= -19 \quad \text{(3)} \\
-x + 9z &= 31 \quad \text{(5)}
\end{align*}\]

Step 2 Eliminate another variable. Then solve for the remaining variable. Eliminate x from equations (4) and (5) by adding.

\[
\begin{align*}
x - 5z &= -19 \quad \text{(3)} \\
-x + 9z &= 31 \quad \text{(5)}
\end{align*}\]

\[
\begin{align*}
4z &= 12 \\
z &= 3
\end{align*}\]
Step 3 Use one of the equations in your 2-by-2 system to solve for x.

\[x - 5z = -19 \]
\[x - 5(3) = -19 \]
\[x = -4 \]

Step 4 Substitute for x and z in one of the original equations to solve for y.

\[2x + y + 3z = 20 \]
\[2(-4) + y + 3(3) = 20 \]
\[y = 3 \]

The solution is $(-4, 3, 3)$.

2.

Step 1 Eliminate one variable. Multiply equation 2 by -1 and eliminate x from equations 1 and 2 by adding.

\[x + 2y + 3z = 9 \] \[x + 3y + 2z = 5 \]
\[-x - 3y - 2z = -5 \] \[-y + z = 4 \]

Multiply equation 3 by -1 and eliminate x from equations 2 and 3 by adding.

\[x + 3y + 2z = 5 \]
\[-x - 4y + z = 5 \]
\[-y + z = 4 \]

Then solve for y and z in one of the original equations.

\[-y + z = 4 \]
\[-y + 3z = 10 \]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation 5 by -1 and eliminate y from equations 4 and 5 by adding.

\[-y + z = 4 \]
\[-y + 3z = 10 \]

Then solve for z.

\[z = 3 \]

Step 3 Use one of the equations in your 2-by-2 system to solve for y.

\[-y + z = 4 \]
\[-y + (3) = 4 \]
\[y = -1 \]

Step 4 Substitute for y and z in one of the original equations to solve for x.

\[x + 2y + 3z = 9 \]
\[x + 2(-1) + 3(3) = 9 \]
\[x = 2 \]

The solution is $(2, -1, 3)$.

3.

Step 1 Eliminate one variable. Multiply equation 3 by -1 and eliminate x from equations 1 and 2 by adding.

\[x + 2y + z = 8 \]
\[2x + y - z = 4 \]
\[x + y + 3z = 7 \]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation 4 by -6 and eliminate y from equations 4 and 5 by adding.

\[5y + 8z = 155 \]
\[30y + 33z = 780 \]

Step 3 Use one of the equations in your 2-by-2 system to solve for y.

\[5y + 8z = 155 \]
\[5y + 5(10) = 155 \]
\[5y = 75 \]
\[y = 15 \]

Step 4 Substitute for y and z in one of the original equations to solve for x.

\[x + 2y + 3z = 9 \]
\[x + 2(15) + 3(10) = 92 \]
\[4x = 32 \]
\[x = 8 \]

Step 5 Inconsistent; no solution

4.

Step 1 Eliminate one variable. Multiply equation 2 by -1 and eliminate x from equations 1 and 2 by adding.

\[5x + 10y + 12z = 310 \]
\[5x + 5y + 4z = 155 \]
\[4x + 2y + 3z = 92 \]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation 4 by -6 and eliminate y from equations 4 and 5 by adding.

\[5y + 8z = 155 \]
\[30y + 33z = 780 \]

Step 3 Use one of the equations in your 2-by-2 system to solve for y.

\[2x + 4y - 2z = 4 \]
\[-x - 2y + z = 4 \]
\[3x + 6y - 3z = 10 \]

Step 4 Substitute for y and z in one of the original equations to solve for x.

\[x + 2y + z = 8 \]
\[x + 2(3) + (1) = 8 \]
\[x = 1 \]

Step 5 Inconsistent; no solution
Multiply equation 3 by -1 and eliminate y from equations 1 and 2 by adding.

\[
\begin{align*}
2x + 4y & - 5z = -10 \\
-x - 2y + 8z & = 16 \\
-2x + 4y + 2z & = 4
\end{align*}
\]

Multiply equation 2 by 1 and eliminate y from equations 2 and 3 by adding.

\[
\begin{align*}
2x + 4y & - 5z = -10 \\
-x - 2y + 8z & = 16 \\
-2x - 4y & + 2z = -4
\end{align*}
\]

Multiply equation 2 by 2 and eliminate y from equations 2 and 3 by adding.

\[
\begin{align*}
4x + 7z & = -14 \\
-4x + 18z & = 36
\end{align*}
\]

Eliminate x from equations 4 and 5 by adding.

\[
\begin{align*}
4x + 7z & = -14 \\
-4x + 18z & = 36
\end{align*}
\]

\[
\begin{align*}
11z & = 22 \\
z & = 2
\end{align*}
\]

consistent; one solution

\[
\begin{align*}
-2x + 3y + z & = 15 \\
x + 3y - z & = -1 \\
-5x - 6y + 4z & = -16
\end{align*}
\]

Multiply equation 2 by -1 and eliminate y from equations 1 and 2 by adding.

\[
\begin{align*}
-2x + 3y + z & = 15 \\
-x - 3y + z & = 1 \\
-3x + 2z & = 16
\end{align*}
\]

Multiply equation 2 by 2 and eliminate y from equations 2 and 3 by adding.

\[
\begin{align*}
2x + 6y - 2z & = -2 \\
-5x - 6y + 4z & = -16 \\
-3x + 2z & = -18
\end{align*}
\]

\[
\begin{align*}
-3x + 2z & = 16 \\
-3x + 2z & = -18
\end{align*}
\]

Multiply equation by -1 and eliminate x by adding.

\[
\begin{align*}
-3x + 2z & = 16 \\
3x - 2z & = 18
\end{align*}
\]

\[
0 = 34
\]

inconsistent; no solution

PRACTICE AND PROBLEM SOLVING

\[
\begin{align*}
2x - y - 3z & = 1 \\
4x + 3y + 2z & = -4 \\
-3x + 2y + 5z & = -3
\end{align*}
\]

Step 1 Eliminate one variable. Multiply equation 1 by 2 and eliminate y from equations 3 and 5 by adding.

\[
\begin{align*}
4x - 2y - 6z & = 2 \\
-3x + 2y + 5z & = -3
\end{align*}
\]

Multiply equation 1 by 3 and eliminate y from equations 1 and 2 by adding.

\[
\begin{align*}
6x - 3y - 9z & = 3 \\
4x + 3y + 2z & = -4
\end{align*}
\]

\[
\begin{align*}
10x - 7z & = -1
\end{align*}
\]

\[
\begin{align*}
x - z & = -1 \\
10x - 7z & = -1
\end{align*}
\]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation 4 by -10 and eliminate x from 4 and 5 by adding.

\[
\begin{align*}
-10x + 10z & = 10 \\
10x - 7z & = -1
\end{align*}
\]

\[
\begin{align*}
3z & = 9 \\
z & = 3
\end{align*}
\]

Step 3 Use one of the equations in your 2-by-2 system to solve for x.

\[
\begin{align*}
x - z & = -1 \\
x - (3) & = -1 \\
x & = 2
\end{align*}
\]

Step 4 Substitute for x and z in one of the original equations to solve for y.

\[
\begin{align*}
2x - y - 3z & = 1 \\
2(2) - y - 3(3) & = 1 \\
y & = -6
\end{align*}
\]

The solution is \((2, -6, 3) \).
9. \[
\begin{align*}
5x - 6y + 2z &= 21 \\
2x + 3y - 3z &= -9 \\
-3x + 9y - 4z &= -24
\end{align*}
\]

Step 1 Eliminate one variable. Multiply equation 1 by 2, and eliminate \(z \) from equations 1 and 3 by adding.

\[
\begin{align*}
10x - 12y + 4z &= 42 \\
-3x + 9y - 4z &= -24
\end{align*}
\]

Multiply equation 1 by 3 and equation 2 by 2.

\[
\begin{align*}
7x - 3y &= 18
\end{align*}
\]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation 4 by \(-4\), and eliminate \(y \) from equations 4 and 5 by adding.

\[
\begin{align*}
-28x + 12y &= -72 \\
19x - 12y &= 45
\end{align*}
\]

\[9x = -27\]

\[x = 3\]

Step 3 Use one of the equations in your 2-by-2 system to solve for \(y \).

\[
\begin{align*}
7x - 3y &= 18 \\
7(3) - 3y &= 18 \\
-3y &= -3
\end{align*}
\]

\[y = 1\]

Step 4 Substitute for \(x \) and \(y \) in one of the original equations to solve for \(z \).

\[
\begin{align*}
2x + 3y - 3z &= -9 \\
2(3) + 3(1) - 3z &= -9 \\
-3z &= -18 \\
z &= 6
\end{align*}
\]

The solution is \((3, 1, 6)\).

10. \[
\begin{align*}
4x + 7y - z &= 42 \\
-2x + 2y + 3z &= -26 \\
2x - 3y + 5z &= 10
\end{align*}
\]

Step 1 Eliminate one variable. Eliminate \(x \) from equations 2 and 3 by adding.

\[
\begin{align*}
-2x + 2y + 3z &= -26 \\
2x - 3y + 5z &= 10
\end{align*}
\]

Multiply equation 3 by \(-2\) and eliminate \(x \) from equations 1 and 3 by adding.

\[
\begin{align*}
4x + 7y - z &= 42 \\
-4x + 6y - 10z &= -20
\end{align*}
\]

\[13y - 11z = 22\]

\[-y + 8z = -16\]

\[13y - 11z = 22\]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation 4 by 13, and eliminate \(y \) from equations 4 and 5 by adding.

\[
\begin{align*}
-13y + 104z &= -208 \\
13y - 11z &= 22
\end{align*}
\]

\[93z = -186\]

\[z = -2\]

Step 3 Use one of the equations in your 2-by-2 system to solve for \(y \).

\[-y + 8z = -16\]

\[-y + 8(-2) = -16\]

\[y = 0\]

Step 4 Substitute for \(y \) and \(z \) in one of the original equations to solve for \(x \).

\[
\begin{align*}
2x - 3y + 5z &= 10 \\
2x - 3(0) + 5(-2) &= 10 \\
2x &= 20
\end{align*}
\]

\[x = 10\]

The solution is \((10, 0, -2)\).
11. \[
\begin{align*}
8x + 9y + 10z &= 9.2 \\
9x + 7y + 8z &= 8.1 \\
6x + 10y + 8z &= 7.8
\end{align*}
\]
Step 1 Eliminate one variable. Multiply equation 3 by \(-1\) and eliminate \(z\) from equations 2 and 3 by adding.
\[
\begin{align*}
9x + 7y + 8z &= 8.1 \\
-6x - 10y - 8z &= -7.8 \\
3x - 3y &= 0.3
\end{align*}
\]
Multiply equation 1 by 4 and equation 3 by \(-5\).
\[
\begin{align*}
3x - 3y &= 0.3 \\
2x - 14y &= -2.2
\end{align*}
\]
Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation 2 by 2, and equation 3 by \(-3\). Eliminate \(x\) by adding.
\[
\begin{align*}
6x - 6y &= 0.6 \\
-6x + 42y &= 6.6 \\
36y &= 7.2 \\
y &= 0.2
\end{align*}
\]
Step 3 Use one of the equations in your 2-by-2 system to solve for \(y\).
\[
\begin{align*}
3x - 3y &= 0.3 \\
3x - 3(0.2) &= 0.3 \\
x &= 0.9 \\
x &= 0.3
\end{align*}
\]
Step 4 Substitute for \(x\) and \(y\) in one of the original equations to solve for \(z\).
\[
\begin{align*}
8x + 9y + 10z &= 9.2 \\
8(0.3) + 9(0.2) + 10z &= 9.2 \\
10z &= 5 \\
z &= 0.5
\end{align*}
\]
talent: 30%; presentation: 20%; star quality: 50%

12. \[
\begin{align*}
4x - 3y + z &= -9 \\
-3x + 2y - z &= 6 \\
-x + 3y + 2z &= 9
\end{align*}
\]
Eliminate \(z\) from equations 1 and 2 by adding.
\[
\begin{align*}
4x - 3y + z &= -9 \\
-3x + 2y - z &= 6 \\
x - y &= -3
\end{align*}
\]
Multiply equation 1 by \(-2\) and eliminate \(z\) from equations 1 and 3 by adding.
\[
\begin{align*}
-8x + 6y - 2z &= 18 \\
-x + 3y + 2z &= 9 \\
-9x + 9y &= 27
\end{align*}
\]
Multiply equation 3 by 9 and eliminate \(x\) from equations 4 and 5 by adding.
\[
\begin{align*}
x - y &= -3 \\
-9x + 9y &= 27
\end{align*}
\]
Multiply equation 4 by 9 and eliminate \(x\) from equations 4 and 5 by adding.
\[
\begin{align*}
x - 9y &= -27 \\
-9x + 9y &= 27
\end{align*}
\]
consistent; infinite number of solutions

13. \[
\begin{align*}
3x + 3y + 3z &= 4 \\
2x - y - 5z &= 2 \\
5x + 2y - 2z &= 8
\end{align*}
\]
Multiply equation 2 by 3 and eliminate \(y\) from equations 1 and 2 by adding.
\[
\begin{align*}
3x + 3y + 3z &= 4 \\
6x - 3y - 15z &= 6 \\
9x - 12z &= 10
\end{align*}
\]
Multiply equation 2 by 2 and eliminate \(y\) from equations 2 and 3 by adding.
\[
\begin{align*}
4x - 2y - 10z &= 4 \\
5x + 2y - 2z &= 8 \\
9x - 12z &= 12
\end{align*}
\]
\[
\begin{align*}
9x - 12z &= 10 \\
9x - 12z &= 12
\end{align*}
\]
inconsistent; no solution

14. \[
\begin{align*}
2x - 2y - 2z &= -16 \\
2x + y + 4z &= -6
\end{align*}
\]
Eliminate \(y\) from equations 1 and 2 by adding.
\[
\begin{align*}
x + y + z &= 8 \\
2x + y + 4z &= -6 \\
2x + 5z &= 2
\end{align*}
\]
Multiply equation 3 by \(-2\) and eliminate \(y\) from equations 2 and 3 by adding.
\[
\begin{align*}
x + 5z &= 2 \\
-2x - 10z &= -4
\end{align*}
\]
Multiply equation 4 by 2 and eliminate \(x\) from equations 4 and 5 by adding.
\[
\begin{align*}
x + 5z &= 2 \\
-2x - 10z &= -4
\end{align*}
\]
consistent; infinite number of solutions
15. \[
\begin{align*}
\angle A &= 2\angle B + 2\angle C && (1) \\
\angle B &= 3\angle C && (2) \\
\angle A + \angle B + \angle C &= 180 && (3)
\end{align*}
\]

Step 1 Solve for \(\angle B\). The second equation is already solved for \(\angle B\): \(\angle B = 3\angle C\).

Step 2 Substitute for \(\angle B\) in equations (1) and (3).
\[
\begin{align*}
\angle A &= 2(3\angle C) + 2\angle C && (1) \\
\angle A + 3\angle C + \angle C &= 180 && (3)
\end{align*}
\]

Step 3 Solve equation (3) for \(\angle A\).
\[
\begin{align*}
\angle A &= 3\angle C && (4) \\
\angle A + 4\angle C &= 180 && (5)
\end{align*}
\]

Step 4 Substitute for \(\angle A\) in equation (4).
\[
\begin{align*}
\angle A &= 8\angle C && (4) \\
(-4\angle C + 180) &= 8\angle C \\
180 &= 12\angle C \\
15 &= \angle C
\end{align*}
\]

Step 5 Substitute for \(\angle C\) to solve for \(\angle B\) and then for \(\angle A\).
\[
\begin{align*}
\angle B &= 3\angle C && (2) \\
\angle A &= 2\angle B \quad 2\angle C && (1) \\
\angle B &= 45 \\
\angle A &= 120, \angle B = 45^\circ, \angle C = 15^\circ
\end{align*}
\]

16. **Step 1** Let \(x\) be the number of 3-pt. baskets, \(y\) be the number of 2-pt. baskets, and \(z\) be the number of 1-pt. free throws.
\[
\begin{align*}
y &= z + 2144 && (1) \\
z &= x + 1558 && (2) \\
3x + 2y + z &= 13,726 && (3)
\end{align*}
\]

Step 2 Solve for \(x\) in equation (2).
\[
\begin{align*}
z &= x + 1558 && (2) \\
x &= z - 1558
\end{align*}
\]

Equation (1) is already solved for \(y\): \(y = z + 2144\).

Step 3 Substitute for \(x\) and \(y\) in equation (3).
\[
\begin{align*}
3(z - 1558) + 2(z + 2144) + z &= 13,726 \\
6z &= 14,112 \\
z &= 2352
\end{align*}
\]

Step 4 Solve equation (1) for \(y\).
\[
\begin{align*}
y &= z + 2144 && (1) \\
y &= (2353) + 2144 \\
y &= 4496
\end{align*}
\]

Step 5 Substitute for \(z\) in equation (2) to solve for \(x\).
\[
\begin{align*}
x &= z + 1558 && (2) \\
x &= 2352 + x + 1558 \\
x &= 794 \\
\end{align*}
\]

Dampier made 794 3-point baskets, 4496 2-point baskets, and 2352 free throws.

17a. Possible answer: You find an infinite number of solutions.

b. Possible answer: A single solution in 3 dimensions is a point with 3 coordinates, so you need 3 equations to identify the point. Each equation represents a piece of information, so you must have 3.

18. Possible answer: The type of solution will depend on the third equation. The third equation could represent a plane that contains the line, intersects the line in a single point, or does not intersect the line at all. There could be 1, 0, or infinitely many solutions.
\[
\begin{align*}
x + y + z &= 53 && (1) \\
3x - 2y + z &= 69 && (2) \\
-x + 2y - z &= -59 && (3)
\end{align*}
\]

Step 1 Eliminate one variable. Multiply equation (1) by \(-1\), and eliminate \(z\) from equations (1) and (2) by adding.
\[
\begin{align*}
-x - y - z &= -53 \quad (1) \\
3x - 2y + z &= 69 \quad (2)
\end{align*}
\]

\[
\begin{align*}
2x - 3y &= 16 \quad (3)
\end{align*}
\]

Eliminate \(z\) from equations (1) and (2) by adding.
\[
\begin{align*}
x + y + z &= 53 \quad (1) \\
-x + 2y - z &= -59 \quad (2)
\end{align*}
\]

\[
\begin{align*}
3y &= -6 \\
y &= -2 \quad (5)
\end{align*}
\]

\[
\begin{align*}
3x - 3y &= 16 \quad (4) \\
y &= -2 \quad (5)
\end{align*}
\]

Step 2 Use one of the equations in the 2-by-2 system to solve for \(x\).
\[
\begin{align*}
2x - 3y &= 16 \quad (4) \\
2x - 3(-2) &= 16 \\
2x &= 10 \\
x &= 5
\end{align*}
\]

Step 3 Substitute for \(x\) and \(y\) in one of the original equations to solve for \(z\).
\[
\begin{align*}
x + y + z &= 53 \quad (1) \\
(5) + (-2) + z &= 53 \\
z &= 50
\end{align*}
\]

The solution is \((5,-2, 50)\).

b. 50 ft

c. \((5, -2, 0)\)

TEST PREP

20. B: \(2(0) + (2) + 3(-1) = -1\) ✓
\[
4(0) + 2(2) + 3(-1) = 1 \checkmark
\]
\[
(1) - 2(2) + 4(-1) = -6 \checkmark
\]

21. J;

Step 1 Let \(a\) represent Ann’s age, \(b\) represent Betty’s age, and \(c\) represent Charlotte’s age.
\[
\begin{align*}
a &= 2b && (1) \\
b &= c - 12 && (2) \\
c + 5 &= 2(b + 5) && (3)
\end{align*}
\]

Step 2 Solve for \(c\) in equation (2).
\[
\begin{align*}
b &= c - 12 && (2) \quad \Rightarrow c = b + 12
\end{align*}
\]

Step 3 Substitute for \(c\) in equation (3).
\[
\begin{align*}
(b + 12) + 5 &= 2b + 10 \quad (3) \\
7 &= b
\end{align*}
\]

Step 4 Substitute for \(b\) to solve for \(a\) and then for \(c\).
\[
\begin{align*}
a &= 2b \quad (1) \\
c + 5 &= 2(b + 5) \quad (3) \\
a &= 2(7) \\
c + 5 &= 2(7 + 5) \\
a &= 14 \\
c &= 19
\end{align*}
\]
22. \(x + 4y = 6 \) \\
\(2x + 3z = 12 \) \\
\(4y + z = 10 \)

From ① \(x = 6 - 4y \)

From ③ \(z = 10 - 4y \)

Substitute these into ②.

\[
\begin{align*}
2(6 - 4y) + 3(10 - 4y) &= 12 \\
12 - 8y + 30 - 12y &= 12 \\
-20y &= -30 \\
y &= 3/2
\end{align*}
\]

Substitute \(y = \frac{3}{2} \) into ①.

\[
\begin{align*}
x + 4\left(\frac{3}{2}\right) &= 6 \\
x + 6 &= 6 \\
x &= 0
\end{align*}
\]

CHALLENGE AND EXTEND

\[
\begin{align*}
w + 2x + 2y + z &= -2 \\
w + 3x - 2y - z &= -6 \quad \\
-2w - x + 3y + 3z &= 6 \quad \\
w + 4x + y - 2z &= -14
\end{align*}
\]

Step 1 Eliminate \(z \) from equations ① and ② by adding.

\[
\begin{align*}
w + 2x + 2y + z &= -2 \\
w + 3x - 2y - z &= -6
\end{align*}
\]

Multiply equation ② by 2 and equation ④ by -1.

Eliminate \(z \) by adding.

\[
\begin{align*}
w + 6x - 4y - 2z &= -12 \\
-w - 4x - y + 2z &= 14
\end{align*}
\]

Multiply equation ④ by 3 and eliminate \(z \) from equations ② and ④ by adding.

\[
\begin{align*}
w + 2x &= -8 \\
w + 8x - 3y &= -12
\end{align*}
\]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation ⑦ by 5 and equation ⑥ by -3. Eliminate \(y \) by adding.

\[
\begin{align*}
w + 40x - 15y &= -60 \\
-3w - 6x + 15y &= -6
\end{align*}
\]

Multiply equation ⑥ by -1 and eliminate \(w \) from equations ⑤ and ⑥ by adding.

\[
\begin{align*}
w + 5x &= -8 \\
-2w - 34x &= 66
\end{align*}
\]

\[
\begin{align*}
w + 5x &= -8 \\
-29x &= 58 \\
x &= -2
\end{align*}
\]
28. \(4x - 3y = -6\)
 \[-3y = -4x - 6\]
 \(y = \frac{4}{3}x + 2\)

29. \(3y - 2x = -12\)
 \(3y = 2x - 12\)
 \(y = \frac{2}{3}x - 4\)

30. \(2x + 5y = 15\)
 \(5y = -2x + 15\)
 \(y = -\frac{2}{5}x + 3\)

READY TO GO ON? PAGE 229

1–3.

4.

5.

6.

7. Let \(x\) be the number of teeth cleanings, \(y\) be the number of one-surface fillings, and \(z\) be the number of initial visits.
\[50x + 100y + 75z = 3500\]

8. | Day | Cleaning | Filling | Initial Visit |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>20</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>Tuesday</td>
<td>25</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Wednesday</td>
<td>16</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>Thursday</td>
<td>25</td>
<td>21</td>
<td>2</td>
</tr>
</tbody>
</table>

9. \(\begin{cases} x + y + z = 0 & \text{①} \\
 2x + y - 2z = -8 & \text{②} \\
 -x + 4z = 10 & \text{③} \end{cases}\)

 Step 1 Eliminate one variable. Eliminate \(x\) from ① and ③ by adding.
 \[x + y + z = 0 \quad \text{①} \]
 \[-x + 4z = 10 \quad \text{③} \]
 \[y + 5z = 10 \quad \text{④} \]
 Multiply equation ① by 2 and equation ② by \(-1\). Eliminate \(x\) by adding.
 \[2x + 2y + 2z = 0 \quad \text{①} \]
 \[-2x - y + 2z = 8 \quad \text{②} \]
 \[y + 4z = 8 \quad \text{⑤} \]
 \[\begin{align*}
 y + 5z &= 10 \quad \text{④} \\
 y + 4z &= 8 \quad \text{⑤} \\
 \hline
 z &= 2
 \end{align*}\]

 Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation ① by \(-1\), and eliminate \(y\) from equations ④ and ⑤ by adding.
 \[y + 5z = 10 \quad \text{④} \]
 \[-y - 4z = -8 \quad \text{⑤} \]
 \[z = 2
 \]

 Step 3 Use one of the equations in your 2-by-2 system to solve for \(y\).
 \[y + 5z = 10 \quad \text{④} \]
 \[y + 5(2) = 10 \]
 \[y = 0
 \]

 Step 4 Substitute for \(y\) and \(z\) in one of the original equations to solve for \(x\).
 \(x + y + z = 0 \quad \text{①} \)
 \(x + (0) + (2) = 0 \)
 \[x = -2
 \]
 The solution is \((-2, 0, 2)\).

10. \(\begin{cases} x + 2y + z = 7 & \text{①} \\
 x - 2y - 4z = -3 & \text{②} \end{cases}\)

 Step 1 Eliminate one variable. Eliminate \(y\) from equations ① and ② by adding.
 \[x + 2y + z = 7 \quad \text{①} \]
 \[x - 2y - 4z = 0 \quad \text{②} \]
 \[2x - 3z = 7 \quad \text{④} \]
 Multiply equation ③ by 2 and eliminate \(y\) from equations ① and ③ by adding.
 \[x + 2y + z = 7 \quad \text{①} \]
 \[4x - 2y - 8z = -6 \quad \text{③} \]
 \[5x + 9z = 1 \quad \text{⑤} \]
 \[\begin{align*}
 2x - 3z &= 7 \quad \text{④} \\
 5x + 9z &= 1 \quad \text{⑤} \\
 \hline
 x &= 2
 \end{align*}\]

 Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation ④ by 3, and eliminate \(z\) from equations ④ and ⑤ by adding.
 \[2x - 9z = 21 \quad \text{④} \]
 \[5x + 9z = 1 \quad \text{⑤} \]
 \[11x = 22 \]
 \[x = 2
 \]

 Step 3 Use one of the equations in your 2-by-2 system to solve for \(z\).
 \[2x - 3z = 7 \quad \text{④} \]
 \[2(2) - 3z = 7 \]
 \[-3z = 3 \]
 \[z = -1\]
11.

Step 1 Eliminate one variable. Eliminate y from equations ① and ② by adding.

\[
\begin{align*}
2x + 2y + z &= 10 \quad ① \\
x - 2y + 3z &= 13 \quad ②
\end{align*}
\]

Multiply equation ② by -1 and equation ③ by 2.

\[
\begin{align*}
x + 4z &= 23 \quad ③ \\
x + 3z &= 11 \quad ④
\end{align*}
\]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation ⑤ by -3, and eliminate x from equations ③ and ④ by adding.

\[
\begin{align*}
3x + 4z &= 23 \quad ③ \\
-3x - 9z &= -33 \quad ⑤
\end{align*}
\]

Then solve for z by adding.

\[
\begin{align*}
0z &= -10 \\
z &= 2
\end{align*}
\]

Step 3 Use one of the equations in your 2-by-2 system to solve for x.

\[
\begin{align*}
x + 3z &= 11 \quad ⑥ \\
x + 3(2) &= 11 \\
x &= 5
\end{align*}
\]

Step 4 Substitute for x and z in one of the original equations to solve for y.

\[
\begin{align*}
x - y + 3z &= 12 \quad ③ \\
(5) - y + 3(2) &= 12 \\
y &= -1
\end{align*}
\]

The solution is $(5, -1, 2)$.

12. Let x be the price of Type A, y be the price of Type B, and z be the price of Type C.

\[
\begin{align*}
6x + 8y + 14z &= 65 \\
10x + 10y + 15z &= 80 \\
12x + 6y + 9z &= 60
\end{align*}
\]

13. The equations can be simplified to

\[
\begin{align*}
6x + 8y + 14z &= 65 \quad ① \\
2x + 2y + 3z &= 16 \quad ② \\
4x + 2y + 3z &= 20 \quad ③
\end{align*}
\]

Step 1 Eliminate one variable. Multiply equation ② by -4, and eliminate y from equations ① and ② by adding.

\[
\begin{align*}
6x + 8y + 14z &= 65 \quad ① \\
-8x - 8y - 12z &= -64 \quad ③ \\
-2x + 2z &= 1 \quad ④
\end{align*}
\]

Multiply equation ③ by -4 and eliminate y from equations ① and ④ by adding.

\[
\begin{align*}
6x + 8y + 14z &= 65 \quad ① \\
-16x - 8y - 12z &= -80 \quad ③ \\
-10x + 2z &= -15 \quad ④
\end{align*}
\]

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation ④ by -1, and eliminate z from equations ⑥ and ⑦ by adding.

\[
\begin{align*}
-2x + 2z &= 1 \quad ④ \\
10x - 2z &= 15 \quad ⑤ \\
8x &= 16 \\
x &= 2
\end{align*}
\]

Step 3 Use one of the equations in your 2-by-2 system to solve for z.

\[
\begin{align*}
-10x + 2z &= -15 \quad ⑤ \\
-10(2) + 2z &= -15 \\
2z &= 5 \\
z &= 2.5
\end{align*}
\]

Step 4 Substitute for x and z in one of the original equations to solve for y.

\[
\begin{align*}
2x + 2y + 3z &= 16 \quad ⑥ \\
2(2) + 2y + 3(2.5) &= 16 \\
2y &= 4.5 \\
y &= 2.25
\end{align*}
\]

Type A costs $2, Type B costs $2.25, and Type C costs $2.50.

14. Let x be the price of Type A, y be the price of Type B, and z be the price of Type C.

\[
\begin{align*}
2x - 2y + 3z &= -2 \quad ① \\
4y + 6z &= 1 \quad ② \\
4x - 4y + 6z &= 5 \quad ③
\end{align*}
\]

Multiply equation ① by -2 and eliminate y from equations ① and ② by adding.

\[
\begin{align*}
-4x + 4y - 6z &= 4 \quad ① \\
4x - 4y + 6z &= 5 \quad ③ \\
0 &= 9
\end{align*}
\]

inconsistent; no solution
15. \(4x - y + z = 5\)
\(3x + y + 2z = 5\)
\(2x - 5z = -8\)

Multiply equation 1 by 5 and eliminate z from equations 1 and 2 by adding.

\[
20x - 5y + 5z = 25 \quad 1
\]
\[
2x - 5z = -8 \quad 3
\]
\[
22x - 5y = 17 \quad 4
\]

Multiply equation 2 by 5 and equation 3 by 2.

Eliminate z by adding.

\[
15x + 5y + 10z = 25 \quad 2
\]
\[
4x - 10z = -16 \quad 3
\]
\[
19x + 5y = 9 \quad 5
\]

Eliminate y from equations 4 and 5 by adding.

\[
22x - 5y = 17 \quad 4
\]
\[
19x + 5y = 9 \quad 5
\]

41x = 26
\[
x = \frac{26}{41}
\]
consistent; one solution

16. \(x - 3y + z = -8\)
\(-x + 3y - z = 8\)

Multiply equation 3 by 2 and eliminate x from equations 1 and 3.

\[
2x + y - 3z = 4 \quad 1
\]
\[
-2x + 6y - 2z = 16 \quad 3
\]
\[
7y - 5z = 20 \quad 4
\]
\[
2x + y - 3z = 4
\]
\[
-2x + 6y - 2z = 16
\]
\[
7y - 5z = 20
\]
\[
7y - 5z = 20 \quad 4
\]
\[
7y - 5z = 20 \quad 5
\]
dependent; infinitely many solutions

STUDY GUIDE: REVIEW, PAGES 232–235

VOCABULARY

1. dependent
2. elimination
3. system of linear inequalities, feasible region
4. three-dimensional coordinate system, ordered triple
5. consistent

LESSON 3-1

6. \[\begin{align*}
 y &= 2x \\
 3x - y &= 5 \\
 y &= 2x
\end{align*}\]

\[
\begin{array}{c|c}
 x & y \\
 \hline
 0 & 0 \\
 5 & 10
\end{array}
\]

\[
\begin{array}{c|c}
 x & y \\
 \hline
 0 & -5 \\
 5 & 10
\end{array}
\]

The solution to the system is \((5, 10)\).

7. \[
\begin{align*}
 x + y &= 6 \\
 x - y &= 2 \\
 y &= -x + 6
\end{align*}\]

\[
\begin{array}{c|c}
 x & y \\
 \hline
 -4 & 10 \\
 0 & 6 \\
 4 & 2
\end{array}
\]

The solution to the system is \((4, 2)\).

8. \[
\begin{align*}
 x - 6y &= 2 \\
 2x - 5y &= -3 \\
 y &= \frac{1}{6}x - \frac{1}{3}
\end{align*}\]

\[
\begin{array}{c|c}
 x & y \\
 \hline
 -4 & -1 \\
 0 & \frac{1}{3} \\
 \frac{2}{5} & \frac{3}{5}
\end{array}
\]

The solution to the system is \((-4, -1)\).

9. \[
\begin{align*}
 x - 3y &= 6 \\
 3x - y &= 2 \\
 y &= \frac{1}{3}x - 2
\end{align*}\]

\[
\begin{array}{c|c}
 x & y \\
 \hline
 -3 & -3 \\
 0 & -2
\end{array}
\]

The solution to the system is \((0, -2)\).

10. \[
\begin{align*}
 y &= x - 7 \\
 x + 9y &= 16 \\
 9y &= -x + 16 \\
 y &= -\frac{1}{9}x + \frac{16}{9}
\end{align*}\]

independent; no solution

11. \[
\begin{align*}
 \frac{1}{2}x + 2y &= 3 \\
 2y &= -\frac{1}{2}x + 3 \\
 y &= -\frac{1}{4}x + \frac{3}{2}
\end{align*}\]

The solution to the system is \((3, 4)\).

12. \[
\begin{align*}
 5x - 10y &= 8 \\
 10y &= 5x - 8 \\
 y &= \frac{1}{2}x - \frac{4}{5}
\end{align*}\]

inconsistent; no solution

13. \[
\begin{align*}
 4x - 3y &= 21 \\
 3y &= 4x - 21 \\
 y &= \frac{4}{3}x - 7
\end{align*}\]

inconsistent; no solution

116 Holt McDougal Algebra 2
14. **Step 1** Write an equation for costs for each locksmith for a house call and re-keying locks. Let \(x \) represent Locksmith A and \(y \) represent Locksmith B.

- **Locksmith A:** \(y = 15x + 25 \)
- **Locksmith B:** \(y = 20x + 10 \)

Step 2 Solve the system by using a table of values.

\[
\begin{array}{c|c|c}
\text{x} & \text{y} & \text{x} & \text{y} \\
\hline
1 & 40 & 1 & 30 \\
2 & 55 & 2 & 50 \\
3 & 70 & 3 & 70 \\
\end{array}
\]

The total costs will be the same for 3 locks.

LEsson 3-2

15. \[
\begin{align*}
\text{y} &= 3x \\
2x - 3y &= -7 \\
\end{align*}
\]

Step 1 Solve one equation for one variable.

The first equation is already solved for \(y \): \(y = 3x \).

Step 2 Substitute the expression into the other equation.

\[
\begin{align*}
2x + 3y &= -7 \\
2x - 3(3x) &= -7 \\
2x - 9x &= -7 \\
-7x &= -7 \\
x &= 1 \\
\end{align*}
\]

Step 3 Substitute the \(x \)-value into one of the original equations to solve for \(y \).

\[
\begin{align*}
y &= 3x \\
y &= 3(1) \\
y &= 3 \\
\end{align*}
\]

The solution is the ordered pair \((1, 3)\).

16. \[
\begin{align*}
\text{y} &= x - 1 \\
4x - y &= 19 \\
\end{align*}
\]

Step 1 Solve one equation for one variable.

The first equation is already solved for \(y \): \(y = x - 1 \).

Step 2 Substitute the expression into the other equation.

\[
\begin{align*}
4x - y &= 19 \\
4x - (x - 1) &= 19 \\
3x + 1 &= 19 \\
x &= 6 \\
\end{align*}
\]

Step 3 Substitute the \(x \)-value into one of the original equations to solve for \(y \).

\[
\begin{align*}
y &= x - 1 \\
y &= (6) - 1 \\
y &= 5 \\
\end{align*}
\]

The solution is the ordered pair \((6, 5)\).

17. \[
\begin{align*}
4x - y &= 0 \\
6x - 3y &= 12 \\
\end{align*}
\]

Step 1 Solve one equation for one variable.

\[
\begin{align*}
4x - y &= 0 \\
y &= 4x \\
\end{align*}
\]

Step 2 Substitute the expression into the other equation.

\[
\begin{align*}
6x - 3y &= 12 \\
6x - 3(4x) &= 12 \\
6x - 12x &= 12 \\
-6x &= 12 \\
x &= -2 \\
\end{align*}
\]

Step 3 Substitute the \(x \)-value into one of the original equations to solve for \(y \).

\[
\begin{align*}
4(x) + 5y &= 41 \\
16 + 5y &= 41 \\
5y &= 25 \\
y &= 5 \\
\end{align*}
\]

The solution is the ordered pair \((4, 5)\).

18. \[
\begin{align*}
5x &= -10y \\
8x - 4y &= 40 \\
\end{align*}
\]

Step 1 Solve one equation for one variable.

\[
\begin{align*}
5x &= -10y \\
x &= -2y \\
\end{align*}
\]

Step 2 Substitute the expression into the other equation.

\[
\begin{align*}
8x - 4y &= 40 \\
8(-2y) - 4y &= 40 \\
-16y + 4y &= 40 \\
-20y &= 40 \\
y &= -2 \\
\end{align*}
\]

Step 3 Substitute the \(y \)-value into one of the original equations to solve for \(x \).

\[
\begin{align*}
5x &= -10y \\
5x &= -10(-2) \\
x &= 4 \\
\end{align*}
\]

The solution is the ordered pair \((4, -2)\).
21. \[\begin{align*} 2x - y &= 8 \\ x + 2y &= 9 \end{align*} \]

Step 1 To eliminate \(x \), multiply both sides of the second equation by \(-2\).

\(-2(x + 2y) = -2(9) \)

Add to eliminate \(x \).

\((-2x - 4y) = -18 \leftarrow \text{original equation} \)

\(-5y = -10 \)

\(y = 2 \)

Step 2 Substitute the \(y \)-value into one of the original equations to solve for \(x \).

\(x + 2(2) = 9 \)

\(x = 5 \)

The solution is the ordered pair \((5, 2)\).

22. \[\begin{align*} 9x - 5y &= 13 \\ 4x - 6y &= 2 \end{align*} \]

Step 1 To eliminate \(y \), multiply both sides of the first equation by \(6 \) and both sides of the second equation by \(-5\).

\(6(9x - 5y) = 6(13) \quad \text{(1)} \)

\(-5(4x - 6y) = -5(2) \quad \text{(2)} \)

Add to eliminate \(y \).

\(54x - 30y = 78 \quad \text{(1)} \)

\(-20x + 30y = -10 \quad \text{(2)} \)

\(-34x = -68 \)

\(x = 2 \)

Step 2 Substitute the \(x \)-value into one of the original equations to solve for \(y \).

\(4(2) - 6y = 2 \)

\(-6y = -6 \)

\(y = 1 \)

The solution is the ordered pair \((2, 1)\).

23. Let \(x \) represent the amount of pine needles.

Let \(y \) represent the amount of lavender.

\[\begin{align*} 1.5x + 4y &= 200 \\ x + y &= 80 \end{align*} \]

\(x = 80 - y \)

Substitute \(x \) into \(\text{(1)} \).

\(1.5(80 - y) + 4y = 200 \)

\(120 - 1.5y + 4y = 200 \)

\(2.5y = 80 \)

\(y = 32 \)

\(x + (32) = 80 \)

\(x = 48 \)

The potpourri will contain 48 oz pine needles and 32 oz lavender.

24. \[\begin{align*} 2x - y &= 8 \\ x + 2y &= 9 \end{align*} \]

25. \[\begin{align*} 9x - 5y &= 13 \\ 4x - 6y &= 2 \end{align*} \]

26. right triangle

27. trapezoid

28. \[\begin{align*} x + y &\leq 120 \\ 8x + 11.5y &< 1200 \end{align*} \]

29. \[\begin{align*} y &\leq 8 \\ y &\geq 4 \end{align*} \]

30. \[\begin{align*} x &\leq 6 \\ y &\geq 3 \end{align*} \]

31. \[\begin{align*} x &\geq 0 \\ y &\geq 0 \\ y &\leq 3x + 1 \\ y &\leq -\frac{3}{4} + 6 \end{align*} \]

Maximize the objective function \(P = 6x + 10y \).

\[
\begin{array}{c|c|c}
\hline
x & y & P = 6x + 10y \\
\hline
0 & 0 & 6(0) + 10(0) = 0 \\
0 & 1 & 6(0) + 10(1) = 10 \\
\frac{4}{3} & 5 & 6\frac{4}{3} + 10(5) = 58 \\
8 & 0 & 6(8) + 10(0) = 48 \\
\hline
\end{array}
\]

The maximum is 58.

32. \[\begin{align*} x &< 3 \\ y &\geq 0 \\ y &< 2x + 1 \\ y &\leq -x + 4 \end{align*} \]

Minimize the objective function \(P = 14x + 9y \).

\[
\begin{array}{c|c|c}
\hline
x & y & P = 14x + 9y \\
\hline
0 & \frac{-1}{2} & 14(0) + 9\left(-\frac{1}{2}\right) = -4.5 \\
1 & 3 & 14(1) + 9(3) = 41 \\
3 & 1 & 14(3) + 9(1) = 51 \\
3 & 0 & 14(3) + 9(0) = 42 \\
\hline
\end{array}
\]

The minimum is \(-4.5\).
35. \[
x \geq 0 \\
y \geq 0 \\
6x + 4y \leq 720 \\
x \geq 2y
\]

36. \[
P = 8x + 9y \\
x \geq 0 \\
y \geq 0 \\
6x + 4y \leq 720 \\
x \geq 2y
\]

Maximize the objective function \(P = 8x + 9y \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(P = 8x + 9y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>8(0) + 9(0) = 0</td>
</tr>
<tr>
<td>90</td>
<td>45</td>
<td>8(90) + 9(45) = 1125</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td>8(120) + 9(0) = 960</td>
</tr>
</tbody>
</table>

The maximum profit for 1 day is $1125.00.

37.

\[
\begin{align*}
10 & \leq x \leq 25 \\
5 & \leq y \leq 10
\end{align*}
\]

Let \(x \) be the number of cell phones with contracts, and \(y \) be the number of cell phones without contracts.

Maximize the objective function \(P = 35x + 5y \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(P = 35x + 5y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>35(10) + 5(5) = 375</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>35(10) + 5(10) = 400</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>35(20) + 5(10) = 750</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>35(25) + 5(5) = 900</td>
</tr>
</tbody>
</table>

25 phones with contracts and 5 phones with no contracts will maximize profits.

38.

\[
\begin{align*}
10 & \leq x \leq 25 \\
5 & \leq y \leq 10
\end{align*}
\]

Let \(d \) be the number of drinks, \(p \) be the number of pizzas, and \(c \) be the number of quarts of ice cream.

\[
2d + 9p + 4c = 35
\]

39–42.

43.

44.

45.

46.

47. Let \(d \) be the number of drinks, \(p \) be the number of pizzas, and \(c \) be the number of quarts of ice cream.

\[
2d + 9p + 4c = 35
\]

LESSON 3-6

48. \[
\begin{align*}
x + 3y + 2z &= 13 \quad \text{①} \\
2x + 2y - z &= 3 \quad \text{②} \\
x - 2y + 3z &= 6 \quad \text{③}
\end{align*}
\]

Step 1 Eliminate one variable. Multiply equation ③ by \(-1\), and eliminate \(x \) from equations ① and ③ by adding.

\[
\begin{align*}
x + 3y + 2z &= 13 \quad \text{①} \\
-x + 2y - 3z &= -6 \quad \text{③}
\end{align*}
\]

Multiply equation ① by 2 and equation ② by \(-1\).

Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation ④ by 5, and eliminate \(z \) from equations ④ and ⑤ by adding.

\[
\begin{align*}
5y - z &= 7 \quad \text{④} \\
4y + 5z &= 23 \quad \text{⑤}
\end{align*}
\]

Step 3 Use one of the equations in your 2-by-2 system to solve for \(z \).

\[
\begin{align*}
5y - z &= 7 \quad \text{④} \\
5(2) - z &= 7 \\
z &= 3
\end{align*}
\]

Step 4 Substitute for \(y \) and \(z \) in one of the original equations to solve for \(x \).

\[
\begin{align*}
x - 2y + 3z &= 6 \quad \text{③} \\
x - 2(2) + 3(3) &= 6 \\
x &= 1
\end{align*}
\]

The solution is \((1, 2, 3)\).
49. \[
\begin{align*}
\begin{cases}
x + y + z &= 2 \quad & (1) \\
3x + 2y - z &= -1 \quad & (2) \\
3x - y &= 4 \quad & (3)
\end{cases}
\end{align*}
\]
Step 1 Eliminate one variable. Multiply equation (3) by \(-3\) and eliminate \(x\) from equations (1) and (2) by adding:
\[
\begin{align*}
-3x - 3y - 3z &= -6 \quad & (1) \\
3x + 2y - z &= -1 \quad & (2) \\
\hline
-5y - 4z &= -7 \quad & (3)
\end{align*}
\]
Multiply equation (3) by \(-1\) and eliminate \(x\) from equations (2) and (3) by adding:
\[
\begin{align*}
-3x - 2y + z &= 1 \quad & (2) \\
3x - y &= 4 \quad & (3) \\
\hline
-3y + z &= 5 \quad & (5)
\end{align*}
\]
\[
\begin{align*}
\begin{cases}
-5y - 4z &= -7 \quad & (3) \\
-3y + z &= 5 \quad & (5)
\end{cases}
\end{align*}
\]
Step 2 Eliminate another variable. Then solve for the remaining variable. Multiply equation (5) by 4 and eliminate \(z\) from equations (4) and (5) by adding:
\[
\begin{align*}
-12y + 4z &= 20 \quad & (5) \\
y - 4z &= -7 \quad & (4) \\
\hline
-13y &= 13 \\
y &= -1
\end{align*}
\]
Step 3 Use one of the equations in your 2-by-2 system to solve for \(z\).
\[
\begin{align*}
-y - 4z &= -7 \quad & (4) \\
-(-1) - 4z &= -7 \\
-4z &= -8 \\
z &= 2
\end{align*}
\]
Step 4 Substitute for \(y\) and \(z\) in one of the original equations to solve for \(x\).
\[
\begin{align*}
x + y + z &= 2 \quad & (1) \\
x + (-1) + (2) &= 2 \\
x &= 1
\end{align*}
\]
The solution is \((1, -1, 2)\).

50. \[
\begin{align*}
\begin{cases}
x + y + z &= -2 \quad & (1) \\
-x + 2y - 5z &= 4 \quad & (2) \\
3x + 3y + 3z &= 5 \quad & (3)
\end{cases}
\end{align*}
\]
Eliminate \(x\) from equations (1) and (2) by adding.
\[
\begin{align*}
x + y + z &= -2 \quad & (1) \\
-x + 2y - 5z &= 4 \quad & (2) \\
\hline
3y - 4z &= 2 \quad & (4)
\end{align*}
\]
Multiply equation (2) by 3, and eliminate \(x\) from equations (2) and (3).
\[
\begin{align*}
-3x + 6y - 15z &= 12 \quad & (2) \\
3x + 3y + 3z &= 5 \quad & (3) \\
\hline
9y - 12z &= 17 \quad & (5)
\end{align*}
\]
\[
\begin{align*}
\begin{cases}
3y - 4z &= 2 \quad & (4) \\
9y - 12z &= 17 \quad & (5)
\end{cases}
\end{align*}
\]
Multiply equation (4) by \(-3\), and eliminate \(y\) from equations (4) and (5) by adding.
\[
\begin{align*}
-9y + 12z &= -6 \quad & (4) \\
9y - 12z &= 17 \quad & (5) \\
\hline
0 &= 11
\end{align*}
\]
Inconsistent; no solution

51. \[
\begin{align*}
\begin{cases}
-x - y + 2z &= -3 \quad & (1) \\
4x + 4y - 8z &= 12 \quad & (2) \\
2x + y - 3z &= -2 \quad & (3)
\end{cases}
\end{align*}
\]
Multiply equation (1) by 2 and eliminate \(x\) from equations (1) and (3) by adding.
\[
\begin{align*}
-2x - 2y + 4z &= -6 \quad & (1) \\
2x + y - 3z &= -2 \quad & (3) \\
\hline
y + z &= 8 \quad & (4)
\end{align*}
\]
Multiply equation (4) by \(-2\) and eliminate \(x\) from equations (2) and (4) by adding.
\[
\begin{align*}
4x + 4y - 8z &= 12 \quad & (2) \\
4x - 2y + 6z &= 4 \quad & (4) \\
\hline
2y - 2z &= 16 \quad & (5)
\end{align*}
\]
\[
\begin{align*}
\begin{cases}
y + z &= -8 \quad & (4) \\
2y - 2z &= 16 \quad & (5)
\end{cases}
\end{align*}
\]
Multiply equation (4) by 2 and eliminate \(z\) from equations (4) and (5).
\[
\begin{align*}
2y + 2z &= -16 \quad & (4) \\
2y - 2z &= 16 \quad & (5) \\
\hline
0 &= 0
\end{align*}
\]
dependent, infinitely many solutions

CHAPTER TEST, PAGE 236

1. \[
\begin{align*}
\begin{cases}
x - y &= -4 \quad & (1) \\
3x - 6y &= -12 \quad & (2)
\end{cases}
\end{align*}
\]
\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
0 & 4 \\
-4 & 0 \\
\hline
\end{array}
\]
\[
y = \frac{1}{2}x + 2
\]
The solution to the system is \((-4, 0)\).

2. \[
\begin{align*}
\begin{cases}
y &= x - 1 \quad & (1) \\
x + 4y &= 6 \quad & (2)
\end{cases}
\end{align*}
\]
\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
0 & -1 \\
2 & 1 \\
\hline
\end{array}
\]
\[
y = -\frac{1}{4}x + \frac{3}{2}
\]
The solution to the system is \((2, 1)\).

3. \[
\begin{align*}
\begin{cases}
x - y &= 3 \quad & (1) \\
2x + 3y &= 6 \quad & (2)
\end{cases}
\end{align*}
\]
\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
0 & -3 \\
3 & 0 \\
\hline
\end{array}
\]
\[
y = -\frac{2}{3}x + 2
\]
The solution to the system is \((3, 0)\).
Step 1: Equation for one variable.

Example:

\[\begin{align*}
6y &= 9x \\
y &= \frac{3}{2}x
\end{align*} \]

8x + 4y = 20
4y = -8x + 20
\[y = -2x + 5 \]

independent; one solution

6. \[\begin{align*}
3x - 9y &= 21 \\
y &= 3x - 21
\end{align*} \]

\[y = \frac{1}{3}x - \frac{7}{3} \]

6 = x - 3y
3y = x - 6
\[y = \frac{1}{3}x - 2 \]
inconsistent; no solution

Step 2: Substitute the expression into the other equation.

\[\begin{align*}
x + 5y &= 20 \\
x + 5(x - 2) &= 20 \\
6x - 10 &= 20 \\
6x &= 30 \\
x &= 5
\end{align*} \]

Step 3: Substitute the x-value into one of the original equations to solve for y.

\[\begin{align*}
y &= x - 2 \\
y &= (5) - 2 \\
y &= 3
\end{align*} \]
The solution is the ordered pair \((5, 3)\).

8. \[\begin{align*}
5x - y &= 33 \\
7x + y &= 51
\end{align*} \]

Step 1: Solve one equation for one variable.

\[5x - y = 33 \]
\[y = 5x - 33 \]

Step 2: Substitute the expression into the other equation.

\[7x + y = 51 \]
\[7x + (5x - 33) = 51 \]
\[12x - 33 = 51 \]
\[12x = 84 \]
\[x = 7 \]

Step 3: Substitute the x-value into one of the original equations to solve for y.

\[5x - y = 33 \]
\[5(7) - y = 33 \]
\[y = 2 \]
The solution is the ordered pair \((7, 2)\).

Step 1: Solve one equation for one variable.

\[x + y = 5 \]
\[2x + 5y = 16 \]

Step 2: Substitute the expression into the other equation.

\[2x + 5y = 16 \]
\[2x + 5(5x - 2) = 16 \]
\[10x + 9(3) = 16 \]
\[10x = 3 \]

Step 3: Substitute the x-value into one of the original equations to solve for y.

\[x + y = 5 \]
\[(3) + y = 5 \]
\[y = 2 \]
The solution is the ordered pair \((3, 2)\).

9. \[\begin{align*}
x + y &= 5 \\
2x + 5y &= 16
\end{align*} \]

Step 1: Solve one equation for one variable.

\[x + y = 5 \]
\[y = -x + 5 \]

Step 2: Substitute the expression into the other equation.

\[2x + 5y = 16 \]
\[2x + 5(-x + 5) = 16 \]
\[-3x + 25 = 16 \]
\[-3x = -9 \]
\[x = 3 \]

Step 3: Substitute the x-value into one of the original equations to solve for y.

\[x + y = 5 \]
\[(3) + y = 5 \]
\[y = 2 \]
The solution is the ordered pair \((3, 2)\).

10. \[\begin{align*}
x + y &\leq 250 \\
0.09x + 0.24y &< 45
\end{align*} \]

Maximize the objective function \[P = 5x + 9y. \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(P = 5x + 9y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5(0) + 9(0) = 0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>5(0) + 9(1) = 9</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5(1) + 9(3) = 32</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5(2) + 9(0) = 10</td>
</tr>
</tbody>
</table>

The minimum is 0.

14–16.

17. Let \(x \) be the number of repairs, \(y \) be the number of installations, and \(z \) be the number of emergencies. \[50x + 150y + 200z = 1000 \]

18. Mon.: \[50(2) + 150(2) + 200z = 1000 \]

Tues.: \[50x + 150(3) + 200(2) = 1000 \]

Wed.: \[50(1) + 150y + 200(4) = 1000 \]

Thurs.: \[50(4) + 150(4) + 200z = 1000 \]

<table>
<thead>
<tr>
<th>Day</th>
<th>Faucet</th>
<th>Sink</th>
<th>Emergency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Tuesday</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Wednesday</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Thursday</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
19. \[
\begin{align*}
x - y + z &= -2 \quad \text{(1)} \\
4x - y + 2z &= -3 \quad \text{(2)} \\
2x - 3y + 2z &= -7 \quad \text{(3)}
\end{align*}
\]

Step 1 Eliminate one variable. Multiply equation (3) by \(-1\) and eliminate \(z\) from equations (2) and (3) by adding.
\[-1(2x - 3y + 2z = -7) \quad \text{(3)} \]
Add to eliminate \(z\).
\[
\begin{align*}
4x - y + 2z &= -3 \quad \text{(2)} \\
-2x + 3y - 2z &= 7 \quad \text{(3)} \\
2x + 2y &= 4 \quad \text{(4)}
\end{align*}
\]
Multiply equation (1) by 2 and equation (2) by \(-1\) and eliminate \(z\) by adding.
\[
\begin{align*}
2x - 2y + 2z &= -4 \quad \text{(1)} \\
-4x + y - 2z &= 3 \quad \text{(2)} \\
-2x - y &= -1 \quad \text{(3)} \\
2x + 2y &= 4 \quad \text{(4)} \\
-2x - y &= -1 \quad \text{(5)}
\end{align*}
\]

Step 2 Eliminate another variable. Then solve for the remaining variable.
\[
\begin{align*}
2x + 2y &= 4 \quad \text{(4)} \\
-2x - y &= -1 \quad \text{(5)}
\end{align*}
\]
\[
y = 3
\]

Step 3 Use one of the equations in your 2-by-2 system to solve for \(x\).
\[
2x + 2y = 4 \quad \text{(4)}
\]
\[
2x + 2(3) = 4
\]
\[
2x = -2
\]
\[
x = -1
\]

Step 4 Substitute for \(x\) and \(y\) in one of the original equations to solve for \(z\).
\[
x - y + z = -2 \quad \text{(1)}
\]
\[
(-1) - (3) + z = -2
\]
\[
z = 2
\]
The solution is \((-1, 3, 2)\).

20. \[
\begin{align*}
x + y + 2z &= 8 \quad \text{(2)} \\
6x - 2y - 2z &= 5 \quad \text{(3)}
\end{align*}
\]
Multiply (2) by \(-2\) and eliminate \(z\) from (1) and (3).
\[
\begin{align*}
-6x + 2y + 2z &= 2 \quad \text{(1)} \\
6x - 2y - 2z &= 5 \quad \text{(3)}
\end{align*}
\]
\[
0 \neq -7
\]
inconsistent.